Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2401687121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133845

RESUMO

The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain's language network.


Assuntos
Idioma , Neocórtex , Humanos , Neocórtex/metabolismo , Lobo Temporal/metabolismo , Masculino , Feminino , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neurônios/metabolismo , Lobo Frontal/metabolismo , Transcriptoma , Adulto
2.
Proc Natl Acad Sci U S A ; 120(47): e2306279120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963247

RESUMO

Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.


Assuntos
Idioma , Estimulação Magnética Transcraniana , Córtex Cerebral , Lobo Parietal , Compreensão/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
3.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466812

RESUMO

How do polyglots-individuals who speak five or more languages-process their languages, and what can this population tell us about the language system? Using fMRI, we identified the language network in each of 34 polyglots (including 16 hyperpolyglots with knowledge of 10+ languages) and examined its response to the native language, non-native languages of varying proficiency, and unfamiliar languages. All language conditions engaged all areas of the language network relative to a control condition. Languages that participants rated as higher proficiency elicited stronger responses, except for the native language, which elicited a similar or lower response than a non-native language of similar proficiency. Furthermore, unfamiliar languages that were typologically related to the participants' high-to-moderate-proficiency languages elicited a stronger response than unfamiliar unrelated languages. The results suggest that the language network's response magnitude scales with the degree of engagement of linguistic computations (e.g. related to lexical access and syntactic-structure building). We also replicated a prior finding of weaker responses to native language in polyglots than non-polyglot bilinguals. These results contribute to our understanding of how multiple languages coexist within a single brain and provide new evidence that the language network responds more strongly to stimuli that more fully engage linguistic computations.


Assuntos
Multilinguismo , Humanos , Imageamento por Ressonância Magnética , Idioma , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico
4.
Hum Brain Mapp ; 45(2): e26564, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339911

RESUMO

Wine tasting is a very complex process that integrates a combination of sensation, language, and memory. Taste and smell provide perceptual information that, together with the semantic narrative that converts flavor into words, seem to be processed differently between sommeliers and naïve wine consumers. We investigate whether sommeliers' wine experience shapes only chemosensory processing, as has been previously demonstrated, or if it also modulates the way in which the taste and olfactory circuits interact with the semantic network. Combining diffusion-weighted images and fMRI (activation and connectivity) we investigated whether brain response to tasting wine differs between sommeliers and nonexperts (1) in the sensory neural circuits representing flavor and/or (2) in the neural circuits for language and memory. We demonstrate that training in wine tasting shapes the microstructure of the left and right superior longitudinal fasciculus. Using mediation analysis, we showed that the experience modulates the relationship between fractional anisotropy and behavior: the higher the fractional anisotropy the higher the capacity to recognize wine complexity. In addition, we found functional differences between sommeliers and naïve consumers affecting the flavor sensory circuit, but also regions involved in semantic operations. The former reflects a capacity for differential sensory processing, while the latter reflects sommeliers' ability to attend to relevant sensory inputs and translate them into complex verbal descriptions. The enhanced synchronization between these apparently independent circuits suggests that sommeliers integrated these descriptions with previous semantic knowledge to optimize their capacity to distinguish between subtle differences in the qualitative character of the wine.


Assuntos
Web Semântica , Semântica , Humanos , Olfato/fisiologia , Percepção Gustatória , Sensação , Paladar/fisiologia
5.
Hum Brain Mapp ; 45(2): e26608, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339899

RESUMO

Emerging research has provided valuable insights into the structural characteristics of the bilingual brain from studies of bilingual adults; however, there is a dearth of evidence examining brain structural alterations in childhood associated with the bilingual experience. This study examined the associations between bilingualism and white matter organization in bilingual children compared to monolingual peers leveraging the large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study. Then, 446 bilingual children (ages 9-10) were identified from the participants in the ABCD data and rigorously matched to a group of 446 monolingual peers. Multiple regression models for selected language and cognitive control white matter pathways were used to compare white matter fractional anisotropy (FA) values between bilinguals and monolinguals, controlling for demographic and environmental factors as covariates in the models. Results revealed significantly lower FA values in bilinguals compared to monolinguals across established dorsal and ventral language network pathways bilaterally (i.e., the superior longitudinal fasciculus and inferior frontal-occipital fasciculus) and right-hemispheric pathways in areas related to cognitive control and short-term memory (i.e., cingulum and parahippocampal cingulum). In contrast to the enhanced FA values observed in adult bilinguals relative to monolinguals, our findings of lower FA in bilingual children relative to monolinguals may suggest a protracted development of white matter pathways associated with language and cognitive control resulting from dual language learning in childhood. Further, these findings underscore the need for large-scale longitudinal investigation of white matter development in bilingual children to understand neuroplasticity associated with the bilingual experience during this period of heightened language learning.


Assuntos
Multilinguismo , Substância Branca , Adulto , Criança , Humanos , Adolescente , Substância Branca/diagnóstico por imagem , Idioma , Desenvolvimento da Linguagem , Cognição
6.
Cogn Neuropsychol ; : 1-23, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38942485

RESUMO

We present a case study detailing cognitive performance, functional neuroimaging, and effects of a hypothesis-driven treatment in a 10-year-old girl diagnosed with complete, isolated corpus callosum agenesis. Despite having average overall intellectual abilities, the girl exhibited profound surface dyslexia and dysgraphia. Spelling treatment significantly and persistently improved her spelling of trained irregular words, and this improvement generalized to reading accuracy and speed of trained words. Diffusion weighted imaging revealed strengthened intrahemispheric white matter connectivity of the left temporal cortex after treatment and identified interhemispheric connectivity between the occipital lobes, likely facilitated by a pathway crossing the midline via the posterior commissure. This case underlines the corpus callosum's critical role in lexical reading and writing. It demonstrates that spelling treatment may enhance interhemispheric connectivity in corpus callosum agenesis through alternative pathways, boosting the development of a more efficient functional organization of the visual word form area within the left temporo-occipital cortex.

7.
Cereb Cortex ; 33(8): 4384-4404, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36130104

RESUMO

A fronto-temporal brain network has long been implicated in language comprehension. However, this network's role in language production remains debated. In particular, it remains unclear whether all or only some language regions contribute to production, and which aspects of production these regions support. Across 3 functional magnetic resonance imaging experiments that rely on robust individual-subject analyses, we characterize the language network's response to high-level production demands. We report 3 novel results. First, sentence production, spoken or typed, elicits a strong response throughout the language network. Second, the language network responds to both phrase-structure building and lexical access demands, although the response to phrase-structure building is stronger and more spatially extensive, present in every language region. Finally, contra some proposals, we find no evidence of brain regions-within or outside the language network-that selectively support phrase-structure building in production relative to comprehension. Instead, all language regions respond more strongly during production than comprehension, suggesting that production incurs a greater cost for the language network. Together, these results align with the idea that language comprehension and production draw on the same knowledge representations, which are stored in a distributed manner within the language-selective network and are used to both interpret and generate linguistic utterances.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Idioma , Encéfalo/fisiologia , Compreensão/fisiologia
8.
Neuroimage ; 271: 120023, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921679

RESUMO

Understanding cortical topographic organization and how it supports complex perceptual and cognitive processes is a fundamental question in neuroscience. Previous work has characterized functional gradients that demonstrate large-scale principles of cortical organization. How these gradients are modulated by rich ecological stimuli remains unknown. Here, we utilize naturalistic stimuli via movie-fMRI to assess macroscale functional organization. We identify principal movie gradients that delineate separate hierarchies anchored in sensorimotor, visual, and auditory/language areas. At the opposite/heteromodal end of these perception-to-cognition axes, we find a more central role for the frontoparietal network along with the default network. Even across different movie stimuli, movie gradients demonstrated good reliability, suggesting that these hierarchies reflect a brain state common across different naturalistic conditions. The relative position of brain areas within movie gradients showed stronger and more numerous correlations with cognitive behavioral scores compared to resting state gradients. Together, these findings provide an ecologically valid representation of the principles underlying cortical organization while the brain is active and engaged in multimodal, dynamic perceptual and cognitive processing.


Assuntos
Córtex Cerebral , Cognição , Conectoma , Percepção , Humanos , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética , Córtex Cerebral/fisiologia , Córtex Cerebral/ultraestrutura
9.
Hum Brain Mapp ; 44(17): 5547-5566, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787648

RESUMO

Recent research has highlighted the importance of domain-general processes and brain regions for language and semantic cognition. Yet, this has been mainly observed in executively demanding tasks, leaving open the question of the contribution of domain-general processes to natural language and semantic cognition. Using fMRI, we investigated whether neural processes reflecting context integration and context update-two key aspects of naturalistic language and semantic processing-are domain-specific versus domain-general. Thus, we compared neural responses during the integration of contextual information across semantic and non-semantic tasks. Whole-brain results revealed both shared (left posterior-dorsal inferior frontal gyrus, left posterior inferior temporal gyrus, and left dorsal angular gyrus/intraparietal sulcus) and distinct (left anterior-ventral inferior frontal gyrus, left anterior ventral angular gyrus, left posterior middle temporal gyrus for semantic control only) regions involved in context integration and update. Furthermore, data-driven functional connectivity analysis clustered domain-specific versus domain-general brain regions into distinct but interacting functional neural networks. These results provide a first characterisation of the neural processes required for context-dependent integration during language processing along the domain-specificity dimension, and at the same time, they bring new insights into the role of left posterior lateral temporal cortex and left angular gyrus for semantic cognition.


Assuntos
Semântica , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Idioma , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
10.
Hum Brain Mapp ; 44(2): 679-690, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169039

RESUMO

Preoperative language deficits are associated with alterations in the language networks of patients with gliomas. This study investigated how gliomas affect language performance by altering the language network. Ninety patients with lower-grade gliomas were included, and their preoperative language performance was evaluated using the Western Aphasia Battery. We also calculated the topological properties based on resting state functional magnetic resonance imaging. All patients were classified according to aphasia quotient (AQ) into the aphasia (AQ < 93.8), mild anomia (AQ > 93.8 and naming section <9.8), and normal groups (AQ > 93.8). The shortest distance from the tumor to the language network (SDTN) was evaluated to identify the effect on language performance induced by the tumor. One-way analysis of variance and post hoc analysis with Sidak correction were used to analyze the differences in topological properties among the three groups. Causal mediation analysis was used to identify indirectly affected mediators. Compared with the mild anomia group, longer shortest path length (p = .0016), lower vulnerability (p = .0331), and weaker nodal efficiencies of three nodes (right caudal Brodmann area [BA] 45, right caudal BA 22, and left BA 41/42, all p < .05) were observed in the aphasia group. The SDTN mediated nodal degree centrality and nodal vulnerability (left rostroventral BA 39), which negatively affected the AQs. Conventional language eloquent and mirrored areas participated in the language network alterations induced by gliomas. The SDTN was a mediator that affected the preoperative language status in patients with gliomas.


Assuntos
Afasia , Glioma , Humanos , Anomia/complicações , Imageamento por Ressonância Magnética , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/patologia , Idioma , Glioma/complicações , Glioma/diagnóstico por imagem , Glioma/patologia , Mapeamento Encefálico
11.
J Neurosci ; 40(23): 4536-4550, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32317387

RESUMO

Aside from the language-selective left-lateralized frontotemporal network, language comprehension sometimes recruits a domain-general bilateral frontoparietal network implicated in executive functions: the multiple demand (MD) network. However, the nature of the MD network's contributions to language comprehension remains debated. To illuminate the role of this network in language processing in humans, we conducted a large-scale fMRI investigation using data from 30 diverse word and sentence comprehension experiments (481 unique participants [female and male], 678 scanning sessions). In line with prior findings, the MD network was active during many language tasks. Moreover, similar to the language-selective network, which is robustly lateralized to the left hemisphere, these responses were stronger in the left-hemisphere MD regions. However, in contrast with the language-selective network, the MD network responded more strongly (1) to lists of unconnected words than to sentences, and (2) in paradigms with an explicit task compared with passive comprehension paradigms. Indeed, many passive comprehension tasks failed to elicit a response above the fixation baseline in the MD network, in contrast to strong responses in the language-selective network. Together, these results argue against a role for the MD network in core aspects of sentence comprehension, such as inhibiting irrelevant meanings or parses, keeping intermediate representations active in working memory, or predicting upcoming words or structures. These results align with recent evidence of relatively poor tracking of the linguistic signal by the MD regions during naturalistic comprehension, and instead suggest that the MD network's engagement during language processing reflects effort associated with extraneous task demands.SIGNIFICANCE STATEMENT Domain-general executive processes, such as working memory and cognitive control, have long been implicated in language comprehension, including in neuroimaging studies that have reported activation in domain-general multiple demand (MD) regions for linguistic manipulations. However, much prior evidence has come from paradigms where language interpretation is accompanied by extraneous tasks. Using a large fMRI dataset (30 experiments/481 participants/678 sessions), we demonstrate that MD regions are engaged during language comprehension in the presence of task demands, but not during passive reading/listening, conditions that strongly activate the frontotemporal language network. These results present a fundamental challenge to proposals whereby linguistic computations, such as inhibiting irrelevant meanings, keeping representations active in working memory, or predicting upcoming elements, draw on domain-general executive resources.


Assuntos
Mapeamento Encefálico/métodos , Compreensão/fisiologia , Idioma , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adolescente , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Adulto Jovem
12.
Hum Brain Mapp ; 42(10): 3253-3268, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33822433

RESUMO

Grammar is central to any natural language. In the past decades, the artificial grammar of the An Bn type in which a pair of associated elements can be nested in the other pair was considered as a desirable model to mimic human language syntax without semantic interference. However, such a grammar relies on mere associating mechanisms, thus insufficient to reflect the hierarchical nature of human syntax. Here, we test how the brain imposes syntactic hierarchies according to the category relations on linearized sequences by designing a novel artificial "Hierarchical syntactic structure-building Grammar" (HG), and compare this to the An Bn grammar as a "Nested associating Grammar" (NG) based on multilevel associations. Thirty-six healthy German native speakers were randomly assigned to one of the two grammars. Both groups performed a grammaticality judgment task on auditorily presented word sequences generated by the corresponding grammar in the scanner after a successful explicit behavioral learning session. Compared to the NG group, we found that the HG group showed a (a) significantly higher involvement of Brodmann area (BA) 44 in Broca's area and the posterior superior temporal gyrus (pSTG); and (b) qualitatively distinct connectivity between the two regions. Thus, the present study demonstrates that the build-up process of syntactic hierarchies on the basis of category relations critically relies on a distinctive left-hemispheric syntactic network involving BA 44 and pSTG. This indicates that our novel artificial grammar can constitute a suitable experimental tool to investigate syntax-specific processes in the human brain.


Assuntos
Mapeamento Encefálico , Área de Broca/fisiologia , Rede Nervosa/fisiologia , Psicolinguística , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Adulto Jovem
13.
Hum Brain Mapp ; 42(12): 3858-3870, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33942956

RESUMO

The adult human brain remains plastic even after puberty. However, whether first language (L1) training in adults can alter the language network is yet largely unknown. Thus, we conducted a longitudinal training experiment on syntactically complex German sentence comprehension. Sentence complexity was varied by the depth of the center embedded relative clauses (i.e., single or double embedded). Comprehension was tested after each sentence with a question on the thematic role assignment. Thirty adult, native German speakers were recruited for 4 days of training. Magnetoencephalography (MEG) data were recorded and subjected to spectral power analysis covering the classical frequency bands (i.e., theta, alpha, beta, low gamma, and gamma). Normalized spectral power, time-locked to the final closure of the relative clause, was subjected to a two-factor analysis ("sentence complexity" and "training days"). Results showed that for the more complex sentences, the interaction of sentence complexity and training days was observed in Brodmann area 44 (BA 44) as a decrease of gamma power with training. Moreover, in the gamma band (55-95 Hz) functional connectivity between BA 44 and other brain regions such as the inferior frontal sulcus and the inferior parietal cortex were correlated with behavioral performance increase due to training. These results show that even for native speakers, complex L1 sentence training improves language performance and alters neural activities of the left hemispheric language network. Training strengthens the use of the dorsal processing stream with working-memory-related brain regions for syntactically complex sentences, thereby demonstrating the brain's functional plasticity for L1 training.


Assuntos
Córtex Cerebral/fisiologia , Lateralidade Funcional/fisiologia , Ritmo Gama/fisiologia , Magnetoencefalografia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Prática Psicológica , Psicolinguística , Adulto , Área de Broca/fisiologia , Compreensão/fisiologia , Feminino , Humanos , Estudos Longitudinais , Magnetoencefalografia/métodos , Masculino , Adulto Jovem
14.
BMC Neurosci ; 22(1): 74, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852787

RESUMO

BACKGROUND: Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). OBJECTIVE: Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. METHODS: Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the "Covert" and "Overt" contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. RESULTS: The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (- 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. CONCLUSION: Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language.


Assuntos
Encéfalo/fisiologia , Lateralidade Funcional/fisiologia , Idioma , Imageamento por Ressonância Magnética , Fala/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
15.
Epilepsia ; 62(12): 2941-2954, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642939

RESUMO

OBJECTIVE: To identify functional and structural alterations in language networks of people with temporal lobe epilepsy (TLE), who frequently present with naming and word-finding difficulties. METHODS: Fifty-five patients with unilateral TLE (29 left) and 16 controls were studied with auditory and picture naming functional magnetic resonance imaging (fMRI) tasks. Activation maxima in the left posterobasal temporal lobe were used as seed regions for whole-brain functional connectivity analyses (psychophysiological interaction). White matter language pathways were investigated using diffusion tensor imaging and neurite orientation dispersion and density imaging metrics extracted along fiber bundles starting from fMRI-guided seeds. Regression analyses were performed to investigate the correlation of functional connectivity with diffusion MRI metrics. RESULTS: In the whole group of patients and controls, weaker functional connectivity from the left posterobasal temporal lobe (1) to the bilateral anterior temporal lobe, precentral gyrus, and lingual gyrus during auditory naming and (2) to the bilateral occipital cortex and right fusiform gyrus during picture naming was associated with decreased neurite orientation dispersion and higher free water fraction of white matter tracts. Compared to controls, TLE patients exhibited fewer structural connections and an impaired coupling of functional and structural metrics. SIGNIFICANCE: TLE is associated with an impairment and decoupling of functional and structural language networks. White matter damage, as evidenced by diffusion abnormalities, may contribute to impaired functional connectivity and language dysfunction in TLE.


Assuntos
Epilepsia do Lobo Temporal , Imagem de Tensor de Difusão , Epilepsia do Lobo Temporal/patologia , Lateralidade Funcional , Humanos , Idioma , Imageamento por Ressonância Magnética , Lobo Temporal
16.
Dev Sci ; 24(2): e13031, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790079

RESUMO

The specific role of the corpus callosum (CC) in language network organization remains unclear, two contrasting models have been proposed: inhibition of homotopic areas allowing for independent functioning of the hemispheres versus integration of information from both hemispheres. This study aimed to add to this discussion with the first investigation of language network connectivity in combination with CC volume measures. In 38 healthy children aged 6-12, we performed task-based functional magnetic resonance imaging to measure language network connectivity, used structural magnetic resonance imaging to quantify CC subsection volumes, and administered various language tests to examine language abilities. We found an increase in left intrahemispheric and bilateral language network connectivity and a decrease in right intrahemispheric connectivity associated with larger volumes of the posterior, mid-posterior, and central subsections of the CC. Consistent with that, larger volumes of the posterior parts of the CC were significantly associated with better verbal fluency and vocabulary, the anterior CC volume was positively correlated with verbal span. Thus, children with larger volumes of CC subsections showed increased interhemispheric language network connectivity and were better in different language domains. This study presents the first evidence that the CC is directly linked to language network connectivity and underlines the excitatory role of the CC in the integration of information from both hemispheres.


Assuntos
Corpo Caloso , Idioma , Criança , Humanos , Imageamento por Ressonância Magnética , Vias Neurais
17.
Brain Cogn ; 155: 105822, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34837801

RESUMO

Many neurodevelopmental conditions imply absent or severely reduced language capacities at school age. Evidence from functional magnetic resonance imaging is highly limited. We selected a series of five cases scanned with the same fMRI paradigm and the aim of relating individual language profiles onto underlying patterns of functional connectivity (FC) across auditory language cortex: three with neurogenetic syndromes (Coffin-Siris, Landau-Kleffner, and Fragile-X), one with idiopathic intellectual disability, one with autism spectrum disorder (ASD). Compared to both a group with typical development (TD) and a verbal ASD group (total N = 110), they all showed interhemispheric FC below two standard deviations of the TD mean. Children with higher language scores showed higher intrahemispheric FC between Heschl's gyrus and other auditory language regions, as well as an increase of FC during language stimulation compared to rest. An increase of FC in forward vs. reversed speech in the posterior and middle temporal gyri was seen across all cases. The Coffin-Siris case, the most severe, also had the most anomalous FC patterns and showed reduced myelin content, while the Landau-Kleffner case showed reduced cortical thickness. These results suggest potential for neural markers and mechanisms of severe language processing deficits under highly heterogeneous etiological conditions.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Córtex Auditivo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criança , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Lobo Temporal
18.
Cereb Cortex ; 30(2): 812-823, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31373629

RESUMO

Language is a fundamental part of human cognition. The question of whether language is processed independently of speech, however, is still heavily discussed. The absence of speech in deaf signers offers the opportunity to disentangle language from speech in the human brain. Using probabilistic tractography, we compared brain structural connectivity of adult deaf signers who had learned sign language early in life to that of matched hearing controls. Quantitative comparison of the connectivity profiles revealed that the core language tracts did not differ between signers and controls, confirming that language is independent of speech. In contrast, pathways involved in the production and perception of speech displayed lower connectivity in deaf signers compared to hearing controls. These differences were located in tracts towards the left pre-supplementary motor area and the thalamus when seeding in Broca's area, and in ipsilateral parietal areas and the precuneus with seeds in left posterior temporal regions. Furthermore, the interhemispheric connectivity between the auditory cortices was lower in the deaf than in the hearing group, underlining the importance of the transcallosal connection for early auditory processes. The present results provide evidence for a functional segregation of the neural pathways for language and speech.


Assuntos
Encéfalo/anatomia & histologia , Idioma , Língua de Sinais , Fala , Adulto , Surdez/patologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Vias Neurais/anatomia & histologia , Pessoas com Deficiência Auditiva , Percepção da Fala
19.
Hum Brain Mapp ; 41(8): 2152-2159, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31957933

RESUMO

Right hemispheric dominance in tonal bilingualism is still controversial. In this study, we investigated hemispheric dominance in 30 simultaneous Bai-Mandarin tonal bilinguals and 28 Mandarin monolinguals using multimodal neuroimaging. Resting-state functional connectivity (RSFC) analysis was first performed to reveal the changes of functional connections within the language-related network. Voxel-based morphology (VBM) and tract-based spatial statistics (TBSS) analyses were then used to identify bilinguals' alterations in gray matter volume (GMV) and fractional anisotropy (FA) of white matter, respectively. RSFC analyses revealed significantly increased functional connections of the right pars-orbital part of the inferior frontal gyrus (IFG) with right caudate, right pars-opercular part of IFG, and left inferior temporal gyrus in Bai-Mandarin bilinguals compared to monolinguals. VBM and TBSS analyses further identified significantly greater GMV in right pars-triangular IFG and increased FA in right superior longitudinal fasciculus (SLF) in bilinguals than in monolinguals. Taken together, these results demonstrate the integrative role of the right IFG in tonal language processing of bilinguals. Our findings suggest that the intrinsic language network in simultaneous tonal bilinguals differs from that of monolinguals in terms of both function and structure.


Assuntos
Conectoma , Dominância Cerebral/fisiologia , Substância Cinzenta , Multilinguismo , Rede Nervosa , Córtex Pré-Frontal , Substância Branca , Adulto , China , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
20.
Hum Brain Mapp ; 41(2): 545-560, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609045

RESUMO

Resting-state functional magnetic resonance imaging (rsfMRI) is a promising technique for language mapping that does not require task-execution. This can be an advantage when language mapping is limited by poor task performance, as is common in clinical settings. Previous studies have shown that language maps extracted with rsfMRI spatially match their task-based homologs, but no study has yet demonstrated the direct participation of the rsfMRI language network in language processes. This demonstration is critically important because spatial similarity can be influenced by the overlap of domain-general regions that are recruited during task-execution. Furthermore, it is unclear which processes are captured by the language network: does it map rather low-level or high-level (e.g., syntactic and lexico-semantic) language processes? We first identified the rsfMRI language network and then investigated task-based responses within its regions when processing stimuli of increasing linguistic content: symbols, pseudowords, words, pseudosentences and sentences. The language network responded only to language stimuli (not to symbols), and higher linguistic content elicited larger brain responses. The left fronto-parietal, the default mode, and the dorsal attention networks were examined and yet none showed language involvement. These findings demonstrate for the first time that the language network extracted through rsfMRI is able to map language in the brain, including regions subtending higher-level syntactic and semantic processes.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Idioma , Rede Nervosa/fisiologia , Adulto , Mapeamento Encefálico/métodos , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Leitura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA