Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(12): e2007486, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590671

RESUMO

Layered metal oxides including MoO3 and WO3 have been widely explored for biological applications owing to their excellent biocompatibility, low toxicity, and easy preparation. However, they normally exhibit weak or negligible near-infrared (NIR) absorption and thus are inefficient for photo-induced biomedical applications. Herein, the structural engineering of layered MoO3 and WO3 nanostructures is first reported to activate their NIR-II absorption for efficient photothermal cancer therapy in the NIR-II window. White-colored micrometre-long MoO3 nanobelts are transformed into blue-colored short, thin, defective, interlayer gap-expanded MoO3-x nanobelts with a strong NIR-II absorption via the simple lithium treatment. The blue MoO3-x nanobelts exhibit a large extinction coefficient of 18.2 L g-1 cm-1 and high photothermal conversion efficiency of 46.9% at 1064 nm. After surface modification, the MoO3-x nanobelts can be used as a robust nanoagent for photoacoustic imaging-guided photothermal therapy to achieve efficient cancer cell ablation and tumor eradication under irradiation by a 1064 nm laser. Importantly, the biodegradable MoO3-x nanobelts can be rapidly degraded and excreted from body. The study highlights that the structural engineering of layered metal oxides is a powerful strategy to tune their properties and thus boost their performances in given applications.


Assuntos
Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Humanos , Neoplasias/terapia , Óxidos , Fototerapia , Nanomedicina Teranóstica
2.
Chemistry ; 27(2): 512-536, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510710

RESUMO

Lithium shortage and the growing demand for electricity storage has encouraged researchers to look for new alternative energy-storage materials. Due to abundant potassium resources, similar redox potential to lithium metal, and low cost, potassium-ion batteries (PIBs), as one of the promising alternatives, have been applied in energy-storage research recently. However, PIBs do not have adequate competition in their electrochemical efficiency because the molar volume of potassium ions is higher than those in lithium and sodium ions. Therefore, for better application and development of PIBs, finding suitable anode and cathode materials is currently the most important task. The latest developments in electrode materials for PIBs have been outlined in depth in this review. It focuses on the structural design and synthetic methods for novel electrode materials, ingenious optimization and tuning strategies, and explains the intrinsic reaction mechanism. The effects of organic electrolytes and aqueous electrolytes on battery systems are compared and clarified. Finally, theoretical and viable insights are given to the challenges posed by the creation and practical application of PIBs in the future.

3.
Nano Lett ; 18(2): 1522-1529, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29293355

RESUMO

Layered metal oxides have been widely used as the best cathode materials for commercial lithium-ion batteries and are being intensively explored for sodium-ion batteries. However, their application to potassium-ion batteries (PIBs) is hampered because of the poor cycling stability and low rate capability due to the larger ionic size of K+ than of Li+ or Na+. Herein, a facile self-templated strategy was used to synthesize unique P2-type K0.6CoO2 microspheres that consist of aggregated primary nanoplates as PIB cathodes. The unique K0.6CoO2 microspheres with aggregated structure significantly enhanced the kinetics of the K+ intercalation/deintercation and also minimized the parasitic reactions between the electrolyte and K0.6CoO2. The P2-K0.6CoO2 microspheres demonstrated a high reversible capacity of 82 mAh g-1 at 10 mA g-1, high rate capability of 65 mAh g-1 at 100 mA g-1, and long cycle life (87% capacity retention over 300 cycles). The high reversibility of the P2-K0.6CoO2 full cell paired with a hard carbon anode further demonstrated the feasibility of PIBs. This work not only successfully demonstrates exceptional performance of P2-type K0.6CoO2 cathodes and microspheres K0.6CoO2∥hard carbon full cells, but also provides new insights into the exploration of other layered metal oxides for PIBs.

4.
Angew Chem Int Ed Engl ; 57(24): 7056-7060, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29664221

RESUMO

Layered transition metal oxides Nax MO2 (M=transition metal) with P2 or O3 structure have attracted attention in sodium-ion batteries (NIBs). A universal law is found to distinguish structural competition between P2 and O3 types based on the ratio of interlayer distances of the alkali metal layer d(O-Na-O) and transition-metal layer d(O-M-O) . The ratio of about 1.62 can be used as an indicator. O3-type Na0.66 Mg0.34 Ti0.66 O2 oxide is prepared as a stable anode for NIBs, in which the low Na-content (ca. 0.66) usually undergoes a P2-type structure with respect to Nax MO2 . This material delivers an available capacity of about 98 mAh g-1 within a voltage range of 0.4-2.0 V and exhibits a better cycling stability (ca. 94.2 % of capacity retention after 128 cycles). In situ X-ray diffraction reveals a single-phase reaction in the discharge-charge process, which is different from the common phase transitions reported in O3-type electrodes, ensuring long-term cycling stability.

5.
Angew Chem Int Ed Engl ; 56(21): 5801-5805, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28436081

RESUMO

Layered metal oxides have attracted increasing attention as cathode materials for sodium-ion batteries (SIBs). However, the application of such cathode materials is still hindered by their poor rate capability and cycling stability. Here, a facile self-templated strategy is developed to synthesize uniform P2-Na0.7 CoO2 microspheres. Due to the unique microsphere structure, the contact area of the active material with electrolyte is minimized. As expected, the P2-Na0.7 CoO2 microspheres exhibit enhanced electrochemical performance for sodium storage in terms of high reversible capacity (125 mAh g-1 at 5 mA g-1 ), superior rate capability and long cycle life (86 % capacity retention over 300 cycles). Importantly, the synthesis method can be easily extended to synthesize other layered metal oxide (P2-Na0.7 MnO2 and O3-NaFeO2 ) microspheres.

6.
ACS Appl Mater Interfaces ; 16(20): 26340-26347, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726691

RESUMO

P2-type layered metal oxides are regarded as promising cathode materials for sodium-ion batteries due to their high voltage platform and rapid Na+ diffusion kinetics. However, limited capacity and unfavorable cycling stability resulting from inevitable phase transformation and detrimental structure collapse hinder their future application. Herein, based on P2-type Na0.67Ni0.18Mn0.67Cu0.1Zn0.05O2, we synthesized a series of secondary spherical morphology cathodes with different radii derived from controlling precursors prepared by a coprecipitation method, which can be promoted to large-scale production. Consequently, the synthesized materials possessed a high tap density of 1.52 g cm-3 and a compacted density of 3.2 g cm-3. The half cells exhibited a specific capacity of 111.8 mAh g-1 at a current density of 0.1 C as well as an 82.64% capacity retention with a high initial capacity of 85.80 mAh g-1 after 1000 cycles under a rate of 5 C. Notably, in situ X-ray diffraction revealed a reversible P2-OP4 phase transition and displayed a tiny volume change of 6.96% during the charge/discharge process, indicating an outstanding cycling stability of the modified cathode. Commendably, the cylindrical cell achieved a capacity of 4.7 Ah with almost no change during 1000 cycles at 2 C, suggesting excellent potential for future applications.

7.
Adv Mater ; 35(15): e2210871, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645218

RESUMO

Electrochemical deionization is regarded as one of the promising water treatment technologies. Here, CoAl-layered metal oxide nanosheets intercalated by sodium dodecyl sulfate (SDS) with an enhanced interlayer spacing from 0.76 to 1.33 nm are synthesized and used as an anode. The enlarged interlayer spacing provides an enhanced ion-diffusion channel and improves the utilization of the interlayer electroactive sites, while heat treatment, transferring layered double hydroxides to layered metal oxides (LMOs), offers additional active oxidation reaction sites to facilitate the electro-sorption rate, contributing to the high salt adsorption capacity (31.78 mg g-1 ) and average salt adsorption rate (3.75 mg g-1  min-1 ) at 1.2 V in 500 mg L-1 NaCl solution. In addition, the excellent long-term cycling stability (92.9%) after 40 cycles proves the strong electronic interaction between SDS and the host layer, which is validated by density functional theory calculations later on. Moreover, the electro-sorption mechanism of LMOs that originated from the reconstruction of the layered structure based on the "memory effect" is revealed according to the X-ray photoelectron spectroscopy peak shifts of Co element. This strategy of expanding the interlayer spacing combined with heat treatment makes LMOs a competitive candidate for electrochemical water deionization.

8.
Water Res ; 222: 118928, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933819

RESUMO

Catalytic membrane can achieve sieving separation and advanced oxidation simultaneously, which can improve the effluent water quality while reducing membrane fouling. In this study, the catalytic membranes (M2+Al@AM) were fabricated by loading different binary layered metal oxides (M2+Al-LMO: MnAl-LMO, CuAl-LMO and CoAl-LMO) on alumina ceramic substrate membranes (AM) via vacuum filtration followed by calcination process. The performance of the catalytic membranes was investigated by filtering actual surface water. It was found that the presence of peroxymonosulfate (PMS) could mitigate membrane fouling effectively, as evidenced by the increase of normalized flux from 0.28 to 0.62 in CoAl@AM/PMS system, from 0.25 to 0.52 in CuAl@AM/PMS system, and from 0.22 to 0.31 in MnAl@AM/PMS system, respectively. Correspondingly, the CoAl@AM exhibited the highest removal for UV254, TOC and fluorescent components in the surface water, followed by CuAl@AM and MnAl@AM. Quenching effect of phenol and furfuryl alcohol proposed the surface-bound radicals and singlet oxygen were the major reactive oxygen species in the M2+Al@AM/PMS systems. Interface free energy calculations confirmed the in-situ PMS activation could enhance the repulsive interactions between NOM and the membranes, thus mitigating membrane fouling. This work provides an original but simple strategy for catalytic ceramic membrane preparation and new insights into the mechanism of membrane fouling mitigation in catalytic membrane system.


Assuntos
Purificação da Água , Cerâmica , Carvão Mineral , Membranas Artificiais , Óxidos , Peróxidos
9.
Adv Mater ; 34(47): e2206039, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36165216

RESUMO

The anionic redox reaction (ARR) has attracted extensive attention due to its potential to enhance the reversible capacity of cathode materials in Li/Na-ion batteries (LIBs/SIBs). However, the understanding of its activation mechanism is still limited by the insufficient mastering of the underlying thermodynamics and kinetics. Herein, a series of Mg/Li/Zn-substituted Nax MnO2 and Lix MnO2 cathode materials are designed to investigate their ARR behaviors. It is found that the ARR can be activated in only Li-substituted Lix MnO2 and not for Mg- and Zn-substituted ones, while all Mg/Li/Zn-substituted Nax MnO2 cathode materials exhibit ARR activities. Combining theoretical calculations with experimental results, such a huge difference between Li and Na cathodes is closely related to the migration of substitution ions from the transition metal layer to the alkali metal layer in a kinetic aspect, which generates unique Li(Na)-O-□TM and/or □Li/ Na -O-□TM configurations and reducing reaction activation energy to trigger the ARR. Based on these findings, an ion-migration mechanism is proposed to explain the different ARR behaviors between the Nax MnO2 and Lix MnO2 , which can not only reveal the origin of ARR in the kinetic aspect, but also provide a new insight for the development of high-capacity metal oxide cathode materials for LIBs/SIBs.

10.
J Hazard Mater ; 424(Pt B): 127515, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879515

RESUMO

In this study, a series of aluminum-based layered metal oxide with various divalent metals (M2+Al-LMOs) were prepared and employed in activation of peroxymonosulfate (PMS) for bisphenol A (BPA) degradation. The BPA removal rates of M2+Al-LMOs were ordered as: CoAl(100%) > MnAl(75.6%) > CuAl(63.2%) > NiAl(9.0%) > MgAl = ZnAl-LMO(0%). CoAl-LMO showed the highest kinetic constant (k = 1.329 µmol-1gcat-1s-1), which was 3.95 times of MnAl-LMO, 5.36 times of CuAl-LMO, 88.6 times of NiAl-LMO and 443 times of MgAl-LMO and ZnAl-LMO, respectively, and also exhibited the highest TOC removal rate (83.3%). The surface-bound sulfate radical (SO4·-) and singlet oxygen (1O2) were elucidated as the dominant reactive oxygen species (ROS) for BPA degradation. The M2+Al-LMOs/PMS system not only displayed wide applicability in different pH and inorganic anions environments, but also had excellent stability and reusability. This work provides a novel family of M2+Al-LMOs to activate PMS for water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA