Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(6): 1265-1281.e24, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827681

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. VIDEO ABSTRACT.


Assuntos
Leucemia Mieloide Aguda/genética , Transcriptoma/genética , Adulto , Sequência de Bases/genética , Medula Óssea , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Genótipo , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/fisiopatologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , RNA , Transdução de Sinais , Análise de Célula Única/métodos , Microambiente Tumoral , Sequenciamento do Exoma/métodos
2.
EMBO J ; 42(24): e112348, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38010205

RESUMO

During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.


Assuntos
Células-Tronco Hematopoéticas , Leucemia , Humanos , Células-Tronco Hematopoéticas/metabolismo , Leucemia/genética , Leucemia/metabolismo , Diferenciação Celular/fisiologia , Medula Óssea , Epigênese Genética
3.
Stem Cells ; 42(3): 173-199, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096483

RESUMO

The key role of cancer stem cells (CSCs) in tumor development and therapy resistance makes them essential biomarkers and therapeutic targets. Numerous agents targeting CSCs, either as monotherapy or as part of combination therapy, are currently being tested in clinical trials to treat solid tumors and hematologic malignancies. Data from ongoing and future clinical trials testing novel approaches to target tumor stemness-related biomarkers and pathways may pave the way for further clinical development of CSC-targeted treatments and CSC-guided selection of therapeutic regimens. In this concise review, we discuss recent progress in developing CSC-directed treatment approaches, focusing on clinical trials testing CSC-directed therapies. We also consider the further development of CSC-assay-guided patient stratification and treatment personalization.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Neoplasias/terapia , Biomarcadores Tumorais/metabolismo , Células-Tronco Neoplásicas/metabolismo
4.
Cancer Cell Int ; 24(1): 66, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336746

RESUMO

Acute myeloid leukemia (AML) is a malignant hematologic disease caused by gene mutations and genomic rearrangements in hematologic progenitors. The PHF6 (PHD finger protein 6) gene is highly conserved and located on the X chromosome in humans and mice. We found that PHF6 was highly expressed in AML cells with MLL rearrangement and was related to the shortened survival time of AML patients. In our study, we knocked out the Phf6 gene at different disease stages in the AML mice model. Moreover, we knocked down PHF6 by shRNA in two AML cell lines and examined the cell growth, apoptosis, and cell cycle. We found that PHF6 deletion significantly inhibited the proliferation of leukemic cells and prolonged the survival time of AML mice. Interestingly, the deletion of PHF6 at a later stage of the disease displayed a better anti-leukemia effect. The expressions of genes related to cell differentiation were increased, while genes that inhibit cell differentiation were decreased with PHF6 knockout. It is very important to analyze the maintenance role of PHF6 in AML, which is different from its tumor-suppressing function in T-cell acute lymphoblastic leukemia (T-ALL). Our study showed that inhibiting PHF6 expression may be a potential therapeutic strategy targeting AML patients.

5.
Mol Cancer ; 22(1): 107, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422628

RESUMO

BACKGROUND: Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS: To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS: A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS: These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.


Assuntos
Leucemia , Proteômica , Humanos , Camundongos , Animais , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Sistemas CRISPR-Cas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Leucemia/genética , Modelos Animais de Doenças , Microambiente Tumoral , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
6.
Hematol Oncol ; 41(3): 499-509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36790759

RESUMO

Our previous study demonstrated that myc, mitochondrial oxidative phosphorylation, mTOR, and stemness are independently responsible for chemoresistance in acute myeloid leukemia (AML) cells. This study aimed to identify potential mechanisms of chemoresistance of the "7 + 3" induction in AML by using a single-cell RNA sequencing (scRNA-seq) approach. In the present study, 13 untreated patients with de novo AML were enrolled and stratified into two groups: complete remission (CR; n = 8) and non-CR (n = 5). Single-cell RNA sequencing was used to analyze genetic profiles of 28,950 AML cells from these patients; results were validated using a previously published bulk RNA-seq dataset. Our study results showed chemoresistant AML cells had premature accumulation during early hematopoiesis. Hematopoietic stem cell-like cells from the non-CR group expressed more leukemic stem cell markers (CD9, CD82, IL3RA, and IL1RAP) than those from the CR group. Chemoresistant progenitor cells had impaired myeloid differentiation owing to early arrest of hematopoiesis. Notably, AML cells analyzed by scRNA-seq and bulk RNA-seq harbored a comparable myeloid lineage cell fraction, which internally validated our results. Using the TCGA database, our analysis demonstrated that patients with AML with higher expression of chemoresistant genetic markers (IL3RA and IL1RAP) had a worse overall survival (p < 0.01 for IL3RA; p < 0.05 for IL1RAP). In conclusion, AML cells responsive and resistant to the "7 + 3" induction were derived from a diverse cancerous hematopoietic stem cell population, as indicated by the specific genetic biomarkers obtained using scRNA-seq approach. Furthermore, arrest of hematopoiesis was shown to occur earlier in chemoresistant AML cells, furthering the current understanding of chemoresistance in AML.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas , Análise de Sequência de RNA
7.
Ann Hematol ; 102(9): 2365-2373, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453949

RESUMO

Many clinical features, besides cytogenetic and molecular abnormalities, can affect the prognosis of the patients with acute myeloid leukemia (AML). Within this context it remains unclear if and how platelet counts affect the outcome of AML patients. In the present study, we examined the platelet counts at diagnosis in 633 newly diagnosed adult patients with AML from January 2010 to April 2021, and divided the cases into the group with low level of platelet counts (≤30×109/L, n=316) and high level of platelet counts (>30×109/L, n=317) according to the median platelet counts. We then validated the prognostic significance and potential mechanism of platelet counts on the relevance of spectral features for diagnostic risk stratification, initial induction therapy response, treatment effect maintenance, long-term survival, leukemia stem cells (LSCs) proportion, immunomodulatory cytokines level and immune cell subsets proportion. The results suggested that AML patients with a high level of platelet counts at diagnosis were associated with a high-risk molecular cytogenetic stratification, low complete remission (CR) rate, poor leukemia free survival (LFS), high proportion of LSCs, high level of transforming growth factor-ß (TGF-ß) and interleukin-1ß (IL-1ß), high proportion of regulatory T cells (Tregs) and monocytic myeloid-derived suppressor cells (M-MDSCs). It was demonstrated that platelet might be an unfavorable prognostic biomarker and was associated with LSCs and immunomodulatory cytokines as well as immune cell subsets in AML.


Assuntos
Citocinas , Leucemia Mieloide Aguda , Adulto , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Biomarcadores , Células-Tronco
8.
Cancer Treat Res ; 190: 181-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113002

RESUMO

Chemical modifications on macromolecules such as DNA, RNA and proteins play important roles in almost all biological processes. The revival of RNA modification research began with the discovery of RNA modification machineries, and with the development of better techniques for characterizing and profiling these modifications at the transcriptome-wide level. Hematopoietic system is maintained by hematopoietic stem cells that possess efficient self-renewal capacity and the potential of differentiation into all lineages of blood cells, and the imbalance of this homeostasis frequently causes hematologic malignancies such as leukemia. Recent studies reveal that dysregulated RNA modifications play essential roles in hematologic malignancies. Herein, we summarize recent advances in some major RNA modifications, the detection methods, roles and mechanisms of these RNA modifications in hematologic malignancies.


Assuntos
Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , RNA/genética
9.
Cell Biochem Funct ; 41(8): 1477-1487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014526

RESUMO

Acute myeloid leukemia (AML) is a highly lethal hematological malignancy in adults and children. Abnormal proliferation of leukemia stem cells (LSC) with CD34+ and CD38- phenotypes are the main clinical features of AML. Patients with AML face drug resistance and treatment failure due to a default in stem and progenitor cells. Therefore, defining LSC properties is necessary for targeting leukemia-initiating cells. Mitochondrial mass and activity increase in AML initiating cells compared with normal stem cells. This idea has offered the inhibition of the mitochondrial translation machinery to reduce the number of leukemia-initiating cells in patients with AML Tigecycline is an FDA-approved microbial antibiotic that inhibits oxidative phosphorylation in mitochondria, resulting in the suppression of leukemia cell proliferation with little toxicity to normal cells. Thus, the present study was conducted to evaluate whether LSC is influenced by mitochondrial inhibition. We measured the IC50 of tigecycline in KG-1a AML cell lines. KG-1a AML cell lines were separated into CD34+ and CD34- cells by MACS. In the following, these cells were treated with 20 µM (IC50) tigecycline. The expression of Annexin/PI, Caspase 3, apoptotic genes (BCL2, BCLX, BAX, BAD, and P53) and proteins (P53, BAX, BCL2 and Caspase 9) was evaluated in CD34+ , CD34- and KG-1a AML cells. In addition, the telomere length and expression of hTERT were evaluated in this study. The results indicated that BCl2 (gene and protein) and BCLX gene dramatically decreased. In addition, BAD, BAX, and P53 gene and protein expression significantly increased in CD34+ AML cells compared to CD34- AML cells. The results also suggested that tigecycline induced intrinsic (Cleaved-caspase 9/Pro-Caspase 9 ratio) and p53-mediated apoptosis. Furthermore, hTERT gene expression and telomere length decreased in the tigecycline-treated groups. Taken together, our findings indicate that inhibition of mitochondrial activity with tigecycline can induce apoptosis in cancer stem cells and can be used as a novel method for cancer therapy.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Adulto , Criança , Humanos , Caspase 9/genética , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Leucemia Mieloide Aguda/genética , Apoptose , Antígenos CD34/metabolismo , Células-Tronco Neoplásicas/metabolismo , Mitocôndrias/metabolismo , Telômero/metabolismo , Telômero/patologia
10.
Int J Cancer ; 150(9): 1455-1470, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913480

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm defined by the presence of t(9;22) translocation whose origin has been associated with the tridimensional genome organization. This rearrangement leads to the fusion of BCR and ABL1 genes giving rise to a chimeric protein with constitutive kinase activity. Imatinib, a tyrosine kinase inhibitor (TKI), is used as a first-line treatment for CML, though ~40% of CML patients do not respond. Here, using structured illumination microscopy (SIM) and 3D reconstruction, we studied the 3D organization patterns of the ABL1 and BCR genes, and their chromosome territories (CTs) CT9 and CT22, in CD34+ cells from CML patients that responded or not to TKI. We found that TKI resistance in CML is associated with high levels of structural disruption of CT9 and CT22 in CD34+ cells, increased CT volumes (especially for CT22), intermingling between CT9 and CT22, and an open-chromatin epigenetic mark in CT22. Altogether our results suggest that large-scale disruption of CT9 and CT22 correlates with the clinical response of CML patients, which could be translated into a potential prognostic marker of response to treatment in this disease and provide novel insights into the mechanisms underlying resistance to TKI in CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Cromossomos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/efeitos adversos
11.
Stem Cells ; 39(6): 723-736, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539590

RESUMO

Heterogeneity of leukemia stem cells (LSCs) is involved in their collective chemoresistance. To eradicate LSCs, it is necessary to understand the mechanisms underlying their heterogeneity. Here, we aimed to identify signals responsible for heterogeneity and variation of LSCs in human acute myeloid leukemia (AML). Monitoring expression levels of endothelial cell-selective adhesion molecule (ESAM), a hematopoietic stem cell-related marker, was useful to detect the plasticity of AML cells. While healthy human hematopoietic stem/progenitor cells robustly expressed ESAM, AML cells exhibited heterogeneous ESAM expression. Interestingly, ESAM- and ESAM+ leukemia cells obtained from AML patients were mutually interconvertible in culture. KG1a and CMK, human AML clones, also represented the heterogeneity in terms of ESAM expression. Single cell culture with ESAM- or ESAM+ AML clones recapitulated the phenotypic interconversion. The phenotypic alteration was regulated at the gene expression level, and RNA sequencing revealed activation of TGFß signaling in these cells. AML cells secreted TGFß1, which autonomously activated TGFß pathway and induced their phenotypic variation. Surprisingly, TGFß signaling blockade inhibited not only the variation but also the proliferation of AML cells. Therefore, autonomous activation of TGFß signaling underlies the LSC heterogeneity, which may be a promising therapeutic target for AML.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Leucemia Mieloide Aguda/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Curr Treat Options Oncol ; 23(11): 1522-1534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190670

RESUMO

OPINION STATEMENT: Acute myeloid leukemia (AML) is the most common form of leukemia in adults, leading to the highest number of annual leukemia-associated deaths in the USA. Although most AML patients initially enter remission following induction therapy, most eventually relapse, underscoring the unmet need for more effective therapies. In recent years, novel high-throughput sequencing techniques, and mouse and human models of disease have increased our understanding of the molecular mechanisms that lead to AML. Leukemogenic mechanisms can be broadly classified into two types-cell-intrinsic and cell-extrinsic. Cell-intrinsic mechanisms include an array of genetic and epigenetic alterations that lead to dysregulated gene expression and function in hematopoietic stem/progenitor cells, leading to their increased fitness and ultimately, malignant transformation. Extrinsic mechanisms include both hematopoietic and non-hematopoietic stromal components of the leukemic microenvironment that interact with pre-leukemic and leukemic clones to promote their survival, self-renewal, and/or resistance to therapy. Through the individual and concerted action of these factors, pre-leukemic clones acquire the changes necessary for leukemic transformation. In addition, following therapy, specific leukemic clones are selected for that eventually re-initiate disease. Improving our understanding of these cell-intrinsic and cell-extrinsic mechanisms will provide novel opportunities to treat AML as well as prevent the development of disease.


Assuntos
Leucemia Mieloide Aguda , Adulto , Humanos , Camundongos , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Transformação Celular Neoplásica/metabolismo , Microambiente Tumoral
13.
Adv Exp Med Biol ; 1387: 127-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35304708

RESUMO

Acute leukemia (AL) is a poor progressive resistant hematological disease, which has different subtypes and immunophenotypic properties according to leukemic blasts. AL is caused by genetic changes and associated with leukemia stem cells (LSCs), which determine its prognosis and endurance. LSCs are thought to be hematopoietic progenitor and stem cell (HPSCs)-like cells that underwent a malignant transformation. In addition to their low number, LSCs have the characteristics of self-renewal, resistance to chemotherapy, and relapse of leukemia. The myeloid ecotropic integration site-1 (MEIS1) protein is a member of the three-amino acid loop extension (TALE) family of homeodomain (HD) proteins that can bind to DNA sequence-specific manner. Studies have shown that overexpression of MEIS1 and associated cofactors involves tumorigenesis of numerous cancers. Historically, increased expression of Meis1 transcript as well as protein has been determined in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients. Moreover, resistance to conventional chemotherapy was observed in leukemic blast samples with high Meis1 content. In this review article, the molecular mechanism of the oncological role of the MEIS1 protein in leukemia and LSC is discussed. In addition, it was suggested that MEIS1 protein could be utilized as a possible treatment target in leukemia with an emphasis on the inhibition of MEIS1, which is overexpressed in LSC.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Proteínas de Neoplasias/metabolismo
14.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563454

RESUMO

The hematopoietic cell system is a complex ecosystem that meets the steady-state and emergency needs of the production of the mature blood cell types. Steady-state hematopoiesis replaces worn out cells, and the hematopoietic system is highly adaptive to needs during, for example, an infection or bleeding. Hematopoiesis is highly integrated and the cell hierarchy behaves in a highly social manner. The social tailoring of hematopoietic stem cells to needs includes the generation of cells that are biased towards a cell lineage; these cells remain versatile and can still adopt a different pathway having made a lineage "choice", and some cytokines instruct the lineage fate of hematopoietic stem and progenitor cells. Leukemia stem cells, which may well often arise from the transformation of a hematopoietic stem cell, sustain the hierarchy of cells for leukemia. Unlike hematopoietic stem cells, the offspring of leukemia stem cells belongs to just one cell lineage. The human leukemias are classified by virtue of their differentiating or partially differentiating cells belonging to just one cell lineage. Some oncogenes set the fate of leukemia stem cells to a single lineage. Therefore, lineage restriction may be largely an attribute whereby leukemia stem cells escape from the normal cellular society. Additional antisocial behaviors are that leukemia cells destroy and alter bone marrow stromal niches, and they can create their own niches.


Assuntos
Leucemia Mieloide Aguda , Leucemia , Diferenciação Celular , Ecossistema , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia/metabolismo , Leucemia Mieloide Aguda/metabolismo , Normas Sociais
15.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362357

RESUMO

There is compelling evidence to support the view that the cell-of-origin for chronic myeloid leukemia is a hematopoietic stem cell. Unlike normal hematopoietic stem cells, the progeny of the leukemia stem cells are predominantly neutrophils during the disease chronic phase and there is a mild anemia. The hallmark oncogene for chronic myeloid leukemia is the BCR-ABLp210 fusion gene. Various studies have excluded a role for BCR-ABLp210 expression in maintaining the population of leukemia stem cells. Studies of BCR-ABLp210 expression in embryonal stem cells that were differentiated into hematopoietic stem cells and of the expression in transgenic mice have revealed that BCR-ABLp210 is able to veer hematopoietic stem and progenitor cells towards a myeloid fate. For the transgenic mice, global changes to the epigenetic landscape were observed. In chronic myeloid leukemia, the ability of the leukemia stem cells to choose from the many fates that are available to normal hematopoietic stem cells appears to be deregulated by BCR-ABLp210 and changes to the epigenome are also important. Even so, we still do not have a precise picture as to why neutrophils are abundantly produced in chronic myeloid leukemia.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Camundongos , Animais , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos Transgênicos , Leucemia Mieloide Aguda/metabolismo
16.
Biochem Biophys Res Commun ; 579: 1-7, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34571387

RESUMO

Chronic myeloid leukemia (CML) is a hematologic malignancy originating from BCR-ABL oncogene-transformed hematopoietic stem cells (HSCs) known as leukemia stem cells (LSCs). Therefore, targeting LSCs is of primary importance to eradicate CML. The present study demonstrates that picropodophyllin (PPP) effectively induces apoptosis and inhibits colony formation in CML stem/progenitor cells as well as quiescent CML progenitors resistant to imatinib therapy, while sparing normal hematopoietic cells in vitro. Administration of PPP in vivo markedly diminishes CML stem/progenitor cells in a transgenic mouse model of CML by inhibition of cell proliferation and enhancement of apoptosis in LSK cells, and significantly improves survival of CML mice. Furthermore, PPP treatment preferentially leads to transcriptional activation of p53 in CML but not normal CD34+ cells, upregulation of p53 protein in LSCs-enriched Sca-1+ cells from CML mice, and increased phosphorylation of p53 and upregulation of Bax protein in Ku812 cells. These results suggest that the inhibitory effects of PPP on CML stem/progenitor cells are associated with selective activation of p53 pathway and propose that PPP is a potent agent that selectively targets CML LSCs, and may be of value in the CML therapy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Podofilotoxina/análogos & derivados , Células-Tronco/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Antígenos CD34/biossíntese , Apoptose , Modelos Animais de Doenças , Sangue Fetal/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Técnicas In Vitro , Células K562 , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Fosforilação , Podofilotoxina/química , Transdução de Sinais , Ativação Transcricional
17.
Exp Mol Pathol ; 118: 104597, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358743

RESUMO

Acute myeloid leukemia (AML) accounts for approximately 20% of all pediatric acute leukemias. The outcome of AML is still unsatisfactory. CD123 and CD200 were demonstrated to play important roles in hematological malignancies. The aim of this study was to investigate the impact of CD200 and CD123 overexpression and the influence of both proteins on the clinical presentation and disease outcome. Bone marrow (BM) samples from 89 pediatric AML patients were obtained at presentation and after therapy. Cells from the bulk population and from the leukemia stem cell (LSC) compartment were examined by multi parametric flow cytometry. In the bulk population, CD200 was positive in 64/89 (71.9) samples, CD123 was positive in 62/89 (69.7%) samples, and dual CD200 and CD123 positivity was observed in 54/89 (60.7%) samples. CD200/CD123 expressions were observed in LSCs in 64/60 samples respectively (71.9%/67.4%), and co-expressed in 51 samples (57.3%). CD200 was overexpressed in secondary AML (p < 0.05). A multivariate analysis revealed that minimal residual disease (MRD) and lymphadenopathy were associated with CD200 overexpression. Moreover, lymphadenopathy, low platelet count, and MRD were independently associated with CD123 expression. The co-expression of CD200 and CD123 demonstrated a statistically significant relationship with unfavorable cytogenetic karyotypes and high total leucocyte count (TLC). The expression of CD200 and CD123 alone and together had an adverse impact on complete remission (CR), MRD positivity, and overall survival (OS). Cases with MRD on day 28 after induction displayed stable expression patterns of CD200 and CD123. CD200 and CD123 both had a negative influence on clinical presentation and treatment outcome, which remarkably worsened when both were concomitantly overexpressed. CD200 and CD123 can therefore be used as markers of MRD in AML and may also serve as therapeutic targets.


Assuntos
Antígenos CD/metabolismo , Biomarcadores/metabolismo , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Leucemia Mieloide Aguda/metabolismo , Masculino , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Taxa de Sobrevida
18.
Biochem Biophys Res Commun ; 522(2): 362-367, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31767149

RESUMO

Tyrosine kinase inhibitors (TKIs) that target BCR-ABL are the standard first-line therapy for patients with chronic-phase CML. However, TKIs cannot eliminate quiescent leukemia stem cells (LSCs) which persist in all patients on long-term therapy and provides a reservoir for disease progression and recurrence. Many researches have confirmed that TKI-resistant LSCs compartment can be captured within CD26 + fraction. In order to analyze distinctive biological characteristics of TKI-resistant LSCs, we isolated the CD34 + CD38-CD26+, CD34 + CD38-CD26-and CD34 + CD38 + cells from 8 CML patients utilizing magnetic and flow sorting, and analyzed the global proteomic expression through high-resolution LC-MS/MS analysis. In the work, we discovered that a list of dysregulated proteins involved in energy metabolism and carcinogenesis, including PPARD, IL1-RAP, HNF, S15A2, PCLO, VA0D1, CKLF5, were extremely upregulated in the CD26 + LSCs while some majoring in DNA mismatch repair or related to cell senescence, such as MLH3, NOLC1, were downregulated. Additionally, we verified the upregulation of PPARD in both CML patients-derived CD26 + LSCs and donor-derived BCR-ABL1 overexpressed HSCs. These results open in turn new therapeutic avenues for targeting TKI-insensitive LSCs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteômica , Adulto , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem
19.
IUBMB Life ; 72(7): 1481-1490, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32181973

RESUMO

We investigated the role of leukemia stem cells in chemoresistance and recurrence of acute myeloid leukemia. Total RNA was isolated from cells or tissues using TRIzol reagent. Cell viability was assessed with the tetrazolium assay. MicroRNA-34a (miR-34a), which acts on cell death regulation pathways, was noticeably downregulated in non-M3 acute myeloid leukemia stem cells compared with normal hematopoietic stem cells. Furthermore, inhibition of miR-34a-mediated suppression in leukemia stem cells was associated with poor clinical outcomes and impaired treatment efficacy in acute myeloid leukemia. Transfection with a miR-34a mimic triggered leukemia stem cell death and prevented leukemia. Bioinformatics analysis and a dual-luciferase reporter assay showed that miR-34a targeted the 3'-untranslated region of histone deacetylase 2, and the reinforced expression of miR-34a remarkably stimulated the expression of histone deacetylase 2 in leukemia stem cells. Ectopic miR-34a expression triggered death of leukemia stem cells via pathways involving the Janus kinase 1-signal transducer and activator of transcription 2-p53 axis. Targeting leukemia stem cells to trigger cell death through upregulation of miR-34a expression could be used to diagnose and treat acute myeloid leukemia.


Assuntos
Apoptose , Exossomos/patologia , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/antagonistas & inibidores , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Exossomos/metabolismo , Feminino , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Pharmacol Res ; 160: 105058, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619722

RESUMO

Despite the discovery of tyrosine kinase inhibitors (TKIs) for the treatment of breakpoint cluster region-Abelson (BCR-ABL)+ cancer types, patients with chronic myeloid leukemia (CML) treated with TKIs develop resistance and severe adverse effects. Combination treatment, especially with a histone deacetylase (HDAC) 6 inhibitor (HDAC6i), appears to be an attractive option to prevent TKI resistance, considering the potential capacity of an HDAC6i to diminish BCR-ABL expression. We first validated the in vivo anti-cancer potential of the compound 7b by significantly reducing the tumor burden of BALB/c mice xenografted with K-562 cells, without notable organ toxicity. Here, we hypothesize that the HDAC6i compound 7b can lead to BCR-ABL downregulation in CML cells and sensitize them to TKI treatment. The results showed that combination treatment with imatinib and 7b resulted in strong synergistic caspase-dependent apoptotic cell death and drastically reduced the proportion of leukemia stem cells, whereas this treatment only moderately affected healthy cells. Ultimately, the combination significantly decreased colony formation in a semisolid methylcellulose medium and tumor mass in xenografted zebrafish compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation followed by disturbance of key proteins in downstream pathways involved in CML proliferation and survival. Taken together, our results suggest that an HDAC6i potentiates the effect of imatinib and could overcome TKI resistance in CML cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ubiquitinação/efeitos dos fármacos , Animais , Caspases/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos BALB C , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA