Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219818

RESUMO

Pea phytoalexins (-)-maackiain and (+)-pisatin have opposite C6a/C11a configurations, but biosynthetically how this occurs is unknown. Pea dirigent-protein (DP) PsPTS2 generates 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (DMDIF), and stereoselectivity toward four possible 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan-4-ol (DMDI) stereoisomers was investigated. Stereoisomer configurations were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted cis-(3R,4R)-DMDI into DMDIF 20-fold faster than the trans-(3R,4S)-isomer. The 4R-configured substrate's near ß-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4S-isomer's α-equatorial-OH was a poorer leaving group. Docking simulations indicated that the 4R-configured ß-axial OH was closest to Asp51, whereas 4S-isomer's α-equatorial OH was further away. Neither cis-(3S,4S)- nor trans-(3S,4R)-DMDIs were substrates, even with the former having C3/C4 stereochemistry as in (+)-pisatin. PsPTS2 used cis-(3R,4R)-7,2'-dihydroxy-4'-methoxyisoflavan-4-ol [cis-(3R,4R)-DMI] and C3/C4 stereoisomers to give 2',7-dihydroxy-4'-methoxyisoflav-3-ene (DMIF). DP homologs may exist in licorice (Glycyrrhiza pallidiflora) and tree legume Bolusanthus speciosus, as DMIF occurs in both species. PsPTS1 utilized cis-(3R,4R)-DMDI to give (-)-maackiain 2200-fold more efficiently than with cis-(3R,4R)-DMI to give (-)-medicarpin. PsPTS1 also slowly converted trans-(3S,4R)-DMDI into (+)-maackiain, reflecting the better 4R configured OH leaving group. PsPTS2 and PsPTS1 provisionally provide the means to enable differing C6a and C11a configurations in (+)-pisatin and (-)-maackiain, via identical DP-engendered mono-QM bound intermediate generation, which PsPTS2 either re-aromatizes to give DMDIF or PsPTS1 intramolecularly cyclizes to afford (-)-maackiain. Substrate docking simulations using PsPTS2 and PsPTS1 indicate cis-(3R,4R)-DMDI binds in the anti-configuration in PsPTS2 to afford DMDIF, and the syn-configuration in PsPTS1 to give maackiain.


Assuntos
Pisum sativum , Proteínas de Plantas , Pterocarpanos , Pisum sativum/química , Pisum sativum/metabolismo , Pterocarpanos/química , Pterocarpanos/metabolismo , Estereoisomerismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Modelos Moleculares , Conformação Molecular
2.
Curr Issues Mol Biol ; 46(6): 5894-5908, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921023

RESUMO

Lung cancer (LC) represents the leading cause of global cancer deaths, with cigarette smoking being considered a major risk factor. Nicotine is a major hazardous compound in cigarette smoke (CS), which stimulates LC progression and non-small cell lung cancer (NSCLC) specifically through activation of the nicotinic acetylcholine receptor (α7nAChR)-mediated cell-signaling pathways and molecular genes involved in proliferation, angiogenesis, and metastasis. Chalcones (CHs) and their derivatives are intermediate plant metabolites involved in flavonol biosynthesis. Isoliquiritigenin (ILTG), licochalcone A-E (LicoA-E), and echinatin (ECH) are the most common natural CHs isolated from the root of Glycyrrhiza (also known as licorice). In vitro and/or vivo experiments have shown that licorice CHs treatment exhibits a range of pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite advances in NSCLC treatment, the mechanisms of licorice CHs in nicotine-induced NSCLC treatment remain unknown. Therefore, the aim of this paper is to review experimental studies through the PubMed/Medline database that reveal the effects of licorice CHs and their potential mechanisms in nicotine-induced NSCLC treatment.

3.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471043

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and even death in piglets, resulting in significant economic losses to the pig industry. Because of the ongoing mutation of PEDV, there might be variations between the vaccine strain and the prevailing strain, causing the vaccine to not offer full protection against different PEDV variant strains. Therefore, it is necessary to develop anti-PEDV drugs to compensate for vaccines. This study confirmed the anti-PEDV effect of licorice extract (Le) in vitro and in vivo. Le inhibited PEDV replication in a dose-dependent manner in vitro. By exploring the effect of Le on the life cycle of PEDV, we found that Le inhibited the attachment, internalization, and replication stages of the virus. In vivo, all five piglets in the PEDV-infected group died within 72 h. In comparison, the Le-treated group had a survival rate of 80 % at the same time, with significant relief of clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Our results suggested that Le can exert anti-PEDV effects in vitro and in vivo. Le is effective and inexpensive; therefore it has the potential to be developed as a new anti-PEDV drug.


Assuntos
Infecções por Coronavirus , Glycyrrhiza , Extratos Vegetais , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Diarreia
4.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605293

RESUMO

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerância ao Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte de Íons , Carbono/metabolismo , Solo , Fatores de Transcrição/genética
5.
Biol Pharm Bull ; 47(7): 1392-1395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085137

RESUMO

18-ß-Glycyrrhetinic acid, a major component of licorice, stimulated the proliferation of both dermal papilla cells and outer root sheath cells isolated from human hair follicles. Thus, suggesting that this compound promotes hair growth. Furthermore, this compound inhibited the activity of testosterone 5α-reductase, an enzyme responsible for converting androgen to dihydroandrogen, with an IC50 of 137.1 µM. 18-ß-Glycyrrhetinic acid also suppressed the expression of transforming growth factor-ß1 (TGF-ß1), which shifts the hair cycle from the anagen phase to the telogen phase. It suggested that this compound may prolong the anagen phase. Based on these findings, this compound could be a potentially effective treatment for androgenetic alopecia.


Assuntos
Inibidores de 5-alfa Redutase , Proliferação de Células , Ácido Glicirretínico , Folículo Piloso , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/análogos & derivados , Humanos , Proliferação de Células/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/citologia , Inibidores de 5-alfa Redutase/farmacologia , Células Cultivadas , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Alopecia/tratamento farmacológico , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética
6.
Phytother Res ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079711

RESUMO

Licorice (Glycyrrhiza spp.) has been a cornerstone of traditional Chinese and Japanese medicine. This systematic review and meta-analysis aimed to evaluate the efficacy of licorice formulations, alone or in combination with other herbs, on liver function enzymes in patients with primary liver disease. We systematically searched MEDLINE, Embase, Scopus, Web of Science, and Cochrane Library up to April 2024. Randomized controlled trials (RCTs) comparing the effects of Glycyrrhiza spp. preparations versus placebo or standard of care controls were included. Standard Cochrane methods were used to extract data and appraise eligible studies. A total of 15 RCTs, involving 1367 participants, were included in the analysis. The studies varied widely in geographical location, duration, and licorice preparations used. Licorice significantly reduced alanine aminotransferase (ALT) by 15.63 U/L (95% CI: -25.08, -6.18; p = 0.001) and aspartate aminotransferase (AST) by 7.37 U/L (95% CI: -13.13, -1.61; p = 0.01) compared to control groups. Subgroup analyses revealed that purified glycyrrhizic acid compounds were particularly effective, showing greater reductions in ALT and AST without significant heterogeneity. Although licorice treatment did not significantly impact gamma-glutamyl transferase and total bilirubin (TBIL) levels overall, specific licorice-herb preparations did show a notable reduction in TBIL. The safety profile of licorice was consistent with known side effects, predominantly mild and related to its mineralocorticoid effects. Despite heterogeneity and potential language bias, the findings suggest that licorice can enhance liver function. Further studies should standardize licorice preparations and explore its role in multifaceted herbal formulations to better understand its hepatoprotective mechanisms.

7.
Phytochem Anal ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989561

RESUMO

INTRODUCTION: Licorice, the dried roots and rhizomes of the Glycyrrhiza uralensis Fisch., holds a prominent status in various formulations within the realm of Chinese medicinal practices. The traditional processing methods of licorice hinder quality assurance, thus prompting Chinese medicine researchers to focus on the fresh processing methods to enhancing processing efficiency and quality. OBJECTIVE: This study aimed to identify the differential compounds of licorice between traditional and fresh processing methods and provide a scientific basis for the fresh processing of licorice and for further research on the processing mechanism. METHODOLOGY: A methodology integrating ultra-performance liquid chromatography with quadrupole-time-of-flight tandem mass spectrometry combined with multivariate statistical analysis was employed to characterize the differential compounds present in licorice between traditional processing and fresh processing. RESULTS: The results derived from principal component analysis and heat map analyses underscored significant differences in the content of bioactive compounds between the two processing methods. By applying conditions of VIP > 1.5 and p < 0.05, a total of 38 differential compounds were identified through t tests, and the transformation mechanisms of select compounds were illustrated. CONCLUSION: The adoption of fresh processing techniques not only improved processing efficiency but also significantly enhanced the preservation of bioactive compounds within licorice. This research has established a rapid and efficient analytical method for the identification of differential compounds present in differently processed licorice products.

8.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000561

RESUMO

Pseudohyperaldosteronism (PHA) is characterized by hypertension, hypokalemia, and a decrease in plasma renin and aldosterone levels. It can be caused by several causes, but the most frequent is due to excess intake of licorice. The effect is mediated by the active metabolite of licorice, glycyrrhetinic acid (GA), which acts by blocking the 11-hydroxysteroid dehydrogenase type 2 and binding to the mineralocorticoid receptor (MR) as an agonist. The management of licorice-induced PHA depends on several individual factors, such as age, gender, comorbidities, duration and amount of licorice intake, and metabolism. The clinical picture usually reverts upon licorice withdrawal, but sometimes mineralocorticoid-like effects can be critical and persist for several weeks, requiring treatment with MR blockers and potassium supplements. Through this case series of licorice-induced PHA, we aim to increase awareness about exogenous PHA, and the possible risk associated with excess intake of licorice. An accurate history is mandatory in patients with hypertension and hypokalemia to avoid unnecessary testing. GA is a component of several products, such as candies, breath fresheners, beverages, tobacco, cosmetics, and laxatives. In recent years, the mechanisms of action of licorice and its active compounds have been better elucidated, suggesting its benefits in several clinical settings. Nevertheless, licorice should still be consumed with caution, considering that licorice-induced PHA is still an underestimated condition, and its intake should be avoided in patients with increased risk of licorice toxicity due to concomitant comorbidities or interfering drugs.


Assuntos
Ácido Glicirretínico , Glycyrrhiza , Hiperaldosteronismo , Humanos , Glycyrrhiza/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Ácido Glicirretínico/farmacologia , Adulto , Hipopotassemia/induzido quimicamente , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Idoso , Hipertensão , Aldosterona/metabolismo , Aldosterona/sangue , Renina/sangue , Renina/metabolismo
9.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063149

RESUMO

Research on the energy metabolism of cancer cells is becoming a central element in oncology, and in recent decades, it has allowed us to better understand the mechanisms underlying the onset and chemoresistance of oncological pathologies. Mitochondrial bioenergetic processes, in particular, have proven to be fundamental for the survival of tumor stem cells (CSC), a subpopulation of tumor cells responsible for tumor recurrence, the onset of metastasis, and the failure of conventional anticancer therapies. Over the years, numerous natural products, in particular flavonoids, widely distributed in the plant kingdom, have been shown to interfere with tumor bioenergetics, demonstrating promising antitumor effects. Herein, the anticancer potential of Licoflavanone, a flavanone isolated from the leaves of G. glabra, was explored for the first time in breast cancer cells. The results obtained highlighted a marked antitumor activity that proved to be greater than that mediated by Glabranin or Pinocembrin, flavanones isolated from the same plant matrix. Furthermore, the investigation of Licoflavanone's effects on breast cancer energy metabolism highlighted the inhibitory activity of this natural product on tumor bioenergetics, a mechanism that could underlie its ability to reduce tumor proliferation, invasiveness, and stemness.


Assuntos
Neoplasias da Mama , Metabolismo Energético , Flavanonas , Glycyrrhiza , Humanos , Flavanonas/farmacologia , Flavanonas/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Glycyrrhiza/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células MCF-7
10.
Molecules ; 29(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203020

RESUMO

Licorice (Glycyrrhiza uralensis Fisch), a significant traditional Chinese herbal medicine, has been extensively utilized in China to treat various ailments. Natural bioactive coumarins, glycycoumarin, glycyrin, and 3-O-methylglycyrol, were isolated from licorice, and they exhibited various pharmacological properties. In this report, we have accomplished the total synthesis of glycycoumarin, glycyrin, and 3-O-methylglycyrol in 5-7 linear steps from commercially available 2,4,6-trihydroxybenzaldehyde with yields of 12.3-21.2%. Additionally, their anti-inflammatory activities were studied and compared. Glycycoumarin, glycyrin, and 3-O-methylglycyrol exhibited different levels of anti-inflammatory activities, with glycyrin being the most potent. Mechanistic studies indicated that glycyrin exerted its anti-inflammatory properties by inhibiting the activation of TNF-α, IL-6, and IL-1ß, making it a potential anti-inflammatory lead compound for further optimization and discovery of new agents.


Assuntos
Anti-Inflamatórios , Cumarínicos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Animais , Camundongos , Estrutura Molecular , Humanos , Citocinas/metabolismo
11.
J Sci Food Agric ; 104(7): 4004-4014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252708

RESUMO

BACKGROUND: Licorice extract is an important raw material for food additives and medicine. The quality of licorice extract is dictated by the drying process. The commonly used drying methods of licorice extract are not efficient in obtaining high-quality products so alternative techniques need to be developed and researched. In this study, ultrasound-assisted vacuum drying (UAVD) was first utilized to improve drying efficiency and produce a higher-quality product. The changes in water mobility of licorice extract during drying were characterized using low-field nuclear magnetic resonance. In addition, the effects of ultrasonic power on the drying dynamics, the contents of liquiritin and glycyrrhizic acid, the antioxidant capacity and the microstructure formation of licorice extract during the whole drying process were investigated. RESULTS: The drying times for licorice extract to reach equilibrium moisture content were reduced by 9.09-69.70% with UAVD at 40-200 W compared with that without ultrasonic treatment (0 W). Moreover, the proportions of bound water and semi-bound water in fresh concentrate were 3.75% and 96.25%. It was also found that high ultrasonic power promoted the flow of water and the formation of porous structure in licorice extract, which led to the improvement of drying efficiency. The contents of liquiritin (2.444%) and glycyrrhizic acid (6.514%) were retained to a large degree in the dried product at an ultrasonic power of 80 W. The DPPH inhibition rate of UAVD samples with different ultrasonic powers ranged from 84.07 ± 0.46% to 90.65 ± 0.22%. CONCLUSION: UAVD has the advantages of high efficiency and low energy consumption, which may be an alternative technology for vacuum drying widely used in industry. © 2024 Society of Chemical Industry.


Assuntos
Glycyrrhiza , Ácido Glicirrízico , Extratos Vegetais , Ultrassom , Vácuo , Dessecação/métodos , Cinética , Água
12.
Artigo em Inglês | MEDLINE | ID: mdl-39087832

RESUMO

Glycyrrhizin-enriched extracts from licorice root are associated with numerous health benefits and are widely used in phytotherapy. There is evidence that ingesting glycyrrhizin beyond threshold concentrations can impact the metabolism of cortisol, inhibiting its conversion to an inactive form, cortisone, via 11-hydroxysteroid dehydrogenase. A consequence can be a form of hypermineralocorticoidism, with elevated potassium excretion and associated hypertension, as demonstrated in rats and humans. Here, 3 orally dosed concentrations of glycyrrhizin (0.2, 0.4 and 0.6 mg/kg bodyweight/day) were assessed over 28 days in dogs. As the current guidelines reflect a lack of reliable data in this species, our aim was to provide relevant information for doses above the current guidelines. The specific purpose of this study was to demonstrate that an intake of licorice with a known therapeutic benefit to dogs does not cause hypermineralocorticoidism in this species. No changes in blood pressure, nor electrolyte excretion were observed in the dogs given these three glycyrrhizin concentrations.

13.
Plant Cell Rep ; 43(1): 15, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135741

RESUMO

KEY MESSAGE: CRISPR-Cas9-mediated disruption of a licorice cellulose synthase-derived glycosyltransferase gene, GuCSyGT, demonstrated the in planta role of GuCSyGT as the enzyme catalyzing 3-O-glucuronosylation of triterpenoid aglycones in soyasaponin biosynthesis. Triterpenoid glycosides (saponins) are a large, structurally diverse group of specialized metabolites in plants, including the sweet saponin glycyrrhizin produced by licorice (Glycyrrhiza uralensis) and soyasaponins that occur widely in legumes, with various bioactivities. The triterpenoid saponin biosynthetic pathway involves the glycosylation of triterpenoid sapogenins (the non-sugar part of triterpenoid saponins) by glycosyltransferases (GTs), leading to diverse saponin structures. Previously, we identified a cellulose synthase-derived GT (CSyGT), as a newly discovered class of triterpenoid GT from G. uralensis. GuCSyGT expressed in yeast, which could transfer the sugar glucuronic acid to the C3 position of glycyrrhetinic acid and soyasapogenol B, which are the sapogenins of glycyrrhizin and soyasaponin I, respectively. This suggested that GuCSyGT is involved in the biosynthesis of glycyrrhizin and soyasaponin I. However, the in planta role of GuCSyGT in saponin biosynthesis remains unclear. In this study, we generated GuCSyGT-disrupted licorice hairy roots using CRISPR-Cas9-mediated genome editing and analyzed the saponin content. This revealed that soyasaponin I was completely absent in GuCSyGT-disrupted lines, demonstrating the in planta role of GuCSyGT in saponin biosynthesis.


Assuntos
Glycyrrhiza , Sapogeninas , Saponinas , Triterpenos , Glycyrrhiza/química , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Sapogeninas/metabolismo , Ácido Glicirrízico/metabolismo , Saponinas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Triterpenos/metabolismo
14.
Biomed Chromatogr ; 37(2): e5532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36269043

RESUMO

Licorice (Glycyrrhiza uralensis) is one of the most popular edible and medicinal plants and is widely used in Asia. Glycyrol (GC) is a major coumarin present in licorice that exhibits various biological activities. We aimed to develop a highly sensitive and rapid liquid chromatography coupled with mass spectrometry method for the quantitative determination analysis of GC in rat plasma. GC showed linear calibration ranges of 1-100 and 50-2,000 ng/ml with correlation coefficients >0.99. The average extraction recovery ranged from 113.26 to 114.84%, and the relative standard deviation of internal standard normalized matrix factors ranged from 6.36 to 9.46%. The intra-day and inter-day precisions of GC were <15%, and the accuracy ranged from 95.31 to 112.72%. Pharmacokinetic studies showed that GC was distributed in the body with a volume of distribution of 9.06 L/kg, and the initial plasma concentration was 3275.11 ng/ml. The area under the plasma concentration vs. time curve was 479.25 ng h/ml. It was rapidly eliminated with a terminal elimination half-life of 1.47 h and a clearance rate of 4.24 L/h/kg. The pharmacokinetic results can help us to better understand the pharmacological effects of GC in the body.


Assuntos
Glycyrrhiza , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Flavonoides , Plasma , Reprodutibilidade dos Testes
15.
Arch Pharm (Weinheim) ; 356(4): e2200470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36707412

RESUMO

Licorice flavonoids (LCFs) have been widely used in food care and medical treatment due to their significant antioxidant activities. However, the molecular mechanism of their antioxidant activity remains unclear. Therefore, network pharmacology, ADMET, density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation were employed to explore the molecular mechanism of the antioxidant effects of LCF. The network pharmacology and ADMET studies showed that the active molecules of kumatakenin (pKa = 6.18), licoflavonol (pKa = 6.86), and topazolin (pKa = 6.21) in LCF are key antioxidant components and have good biosafety. Molecular docking and MD simulation studies demonstrated that active molecules interacted with amino acid residues in target proteins to form stable protein-ligand complexes and exert their antioxidant effects. DFT studies showed that the antioxidant activity of LCF could be significantly modulated under the solvent-mediated effect. In addition, based on the derivation of the Henderson-Hasselbalch and van't Hoff formulas, the functional relationships between the reaction-free energy (ΔG) of LCF and the pH and pKa values were established. The results showed that active molecules with larger pKa values will be more conducive to the improvement of their antioxidant activity under solvent-mediated effects. In conclusion, this study found that increasing the pKa value of LCF would be an effective strategy to improve their antioxidant activity under the effect of solvent mediation. The pKa value of an LCF will be a direct standard to evaluate its solvent-mediated antioxidant activity. This study will provide theoretical guidance for the development of natural antioxidants.


Assuntos
Antioxidantes , Glycyrrhiza , Solventes , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Flavonoides/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
16.
Phytochem Anal ; 34(4): 414-420, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36945197

RESUMO

INTRODUCTION: Traditional Chinese medicine (TCM) revolves around complex mixtures bound to specific roles within the formulation, among which saponin-containing plants with alleged properties of harmonising or detoxifying other compounds present in the preparations. OBJECTIVE: This article deals with the study of these interactions with, as a model, the interaction between saponins and selected active principles. METHODS: The measurement of the partition coefficient between water and octanol (logP) was used as an indicator and determined by nuclear magnetic resonance (NMR) for these active principles in the presence of saponins. For each compound, a graph was constructed showing the evolution of logP with increasing concentrations of saponins. RESULTS: Four distinct patterns of interactions were distinguished. Pattern A showed a constant decrease of logP, pattern B showed a decrease followed by a plateau, in pattern C the logP did not vary until the critical micellar concentration (CMC) and decreased afterwards, and pattern D exhibited an increase of logP. These properties were linked to the ability of saponins to form micelles in water once the CMC is reached. The interaction of aconitine and saponins followed pattern D, thus explaining the detoxification of herbal preparations using Aconitum with licorice. The licorice facilitated the extraction of the notoriously water-insoluble artemisinin from Artemisia annua. CONCLUSION: This investigation confirms that the physical properties of micelle forming saponins are intimately linked to a modification of behaviour of the other molecules in solution, as seen with the alteration of logP and the four types of interactions presented.


Assuntos
Medicamentos de Ervas Chinesas , Saponinas , Medicina Tradicional Chinesa , Micelas , Medicamentos de Ervas Chinesas/química , Água/química
17.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958916

RESUMO

There are reports indicating that licochalcones can inhibit the proliferation, migration, and invasion of cancer cells by promoting the expression of autophagy-related proteins, inhibiting the expression of cell cycle proteins and angiogenic factors, and regulating autophagy and apoptosis. This study aims to reveal the potential mechanisms of licochalcone A (LCA), licochalcone B (LCB), licochalcone C (LCC), licochalcone D (LCD), licochalcone E (LCE), licochalcone F (LCF), and licochalcone G (LCG) inhibition in liver cancer through computer-aided screening strategies. By using machine learning clustering analysis to search for other structurally similar components in licorice, quantitative calculations were conducted to collect the structural commonalities of these components related to liver cancer and to identify key residues involved in the interactions between small molecules and key target proteins. Our research results show that the seven licochalcones molecules interfere with the cancer signaling pathway via the NF-κB signaling pathway, PDL1 expression and PD1 checkpoint pathway in cancer, and others. Glypallichalcone, Echinatin, and 3,4,3',4'-Tetrahydroxy-2-methoxychalcone in licorice also have similar structures to the seven licochalcones, which may indicate their similar effects. We also identified the key residues (including ASN364, GLY365, TRP366, and TYR485) involved in the interactions between ten flavonoids and the key target protein (nitric oxide synthase 2). In summary, we provide valuable insights into the molecular mechanisms of the anticancer effects of licorice flavonoids, providing new ideas for the design of small molecules for liver cancer drugs.


Assuntos
Chalconas , Neoplasias Hepáticas , Humanos , Farmacologia em Rede , Chalconas/farmacologia , Chalconas/química , Flavonoides , NF-kappa B , Neoplasias Hepáticas/tratamento farmacológico
18.
Molecules ; 28(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836809

RESUMO

Licorice is a remarkable traditional Chinese medicine obtained from the dried root and rhizomes of the Glycyrrhiza genus, and t has been utilized in China for many centuries. It consists of more than 300 compounds that are mainly divided into triterpene saponins, flavonoids, polysaccharides, and phenolic components. The active compounds of licorice have been found to possess multiple biological activities, including antitumor, anti-inflammatory, antiviral, antimicrobial, immunoregulatory, cardioprotective, and neuroprotective functions. In addition to providing a brief overview of licorice's adjuvant properties, this review describes and analyzes the pharmacological mechanisms by which licorice components function to treat gastric cancer. Furthermore, licorice compounds are also found to be potent adjuvant chemotherapy agents, as they can improve the quality of life of cancer patients and alleviate chemotherapy-induced adverse effects.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Qualidade de Vida , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
19.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570825

RESUMO

Licorice, a widely used traditional Chinese medicine, contains more than 300 flavonoids and more than 20 triterpenoids, which have potential medicinal value and can prevent the growth of tumor cells by blocking the cell cycle, affecting the regulation of the apoptosis gene of tumor cells, and inhibiting tumor cell angiogenesis. However, many of the compounds in licorice still have the drawbacks of poor solubility, significant toxic side effects, and low antitumor activity. This article reviews the structural modification of effective antitumor active ingredients in licorice, thus providing a theoretical basis for further investigation of licorice and the development of new antitumor drugs.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza , Glycyrrhiza/química , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Flavonoides/farmacologia , Medicina Tradicional Chinesa
20.
Inflammopharmacology ; 31(6): 3037-3045, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847472

RESUMO

Licorice extract (glycyrrhizin), a potent antiviral, anti-inflammatory, and antioxidant remedy, is a potential therapeutic option for COVID-19. We evaluated the efficacy and safety of licorice in patients with moderate COVID-19. In this study, 60 patients with confirmed COVID-19 were randomly assigned in a 1:1 ratio to receive licorice (at a dose of 760 mg three times a day for seven days) or control groups. The primary outcomes were SPO2, body temperature, and respiratory rate (RR) after the end of the intervention. The findings indicated that SPO2, body temperature, and RR had no significant difference between the groups at the end of the intervention. However, CRP and ALT improved in the licorice group toward the baseline. The number of patients with worse prognoses, LOS, mortality, and the incidence of adverse events were not different between the groups at the end of the study. Licorice had no beneficial effect on the clinical symptoms of COVID-19. Moreover, this intervention demonstrated a safe profile of adverse events. The confirmation of the results of this preparatory trial requires more detailed multiple-center trials with a larger sample size.


Assuntos
COVID-19 , Glycyrrhiza , Humanos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/uso terapêutico , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA