Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770783

RESUMO

The accurate evaluation of nonlinear optical (NLO) coefficient, the main parameter affecting light conversion efficiency, plays a crucial role in the development of NLO materials. The Kurtz-Perry powder technique can evaluate second-harmonic generation (SHG) intensity in pristine powder form, saving a significant amount of time and energy in the preliminary screening of materials. However, the Kurtz-Perry method has recently been subject to some controversy due to the limitations of the Kurtz-Perry theory and the oversimplified experimental operation. Therefore, it is very meaningful to revisit and develop the Kurtz-Perry technique. In this work, on the basis of introducing the light scattering effect into the original Kurtz-Perry theory, the theoretical expression of second-harmonic generation intensity with respect to band gap and refractive index are analyzed. In addition, the reference-dependent SHG measurements were carried out on polycrystalline LiB3O5 (LBO), AgGaQ2 (Q = S, Se), BaGa4Q7 (Q = S, Se), and ZnGeP2 (ZGP), and the results of SHG response emphasize the importance of using appropriate references to the Kurtz-Perry method. In order to obtain reliable values of nonlinear coefficients, two criteria for selecting a reference compound were proposed: (1) it should possess a band gap close to that of the sample to be measured and (2) it should possess a refractive index close to that of the sample to be measured. This work might shed light on improvements in accuracy that can be made for effective NLO coefficients obtained using the Kurtz-Perry method.

2.
Small ; 17(43): e2100246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33818015

RESUMO

The introduction of patterned sapphire substrates (PSS) has been regarded as an effective method to improve the photoelectric performance of 2D layered materials in recent years. Molybdenum disulfide (MoS2 ), an intriguing transition metal 2D materials with splendid photoresponse owing to a direct-indirect bandgap transition at monolayer, shows promising optoelectronics applications. Here, a large-scale, continuous multilayer MoS2 film is prepared on a SiO2 /Si substrate and transferred to flat sapphire substrate and PSS, respectively. An enhanced dynamic distribution of local electric field and concentrated photon excitons across the interface between MoS2 and patterned sapphire substrates are revealed by the finite-difference time-domain simulation. The photoelectric performance of the MoS2 /PSS photodetector is improved under the three lasers of 365, 460, and 660 nm. Under the 365 nm laser, the photocurrent increased by 3 times, noise equivalent power (NEP) decreases to 1.77 × 10-14 W/Hz1/2 and specific detectivity (D*) increases to 1.2 × 1010 Jones. Meanwhile, the responsivity is increased by 7 times at 460 nm, and the response time of the MoS2 /PSS photodetector is also shortened under three wavelengths. The work demonstrates an effective method for enhancing the optical properties of photodetectors and enabling simultaneous detection of broad-spectrum emissions.

3.
ACS Appl Mater Interfaces ; 13(13): 15820-15826, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755432

RESUMO

Strain-adjusting the band gap of MoS2 using patterned substrates to improve the photoelectric performance of MoS2 has gradually become a research hotspot in recent years. However, there are still difficulties in obtaining high-quality two-dimensional materials and preparing photodetectors on patterned substrates. To overcome this, a continuous multilayer MoS2 film was transferred to a patterned gallium nitride substrate (PGS) for the fabrication of photodetectors, and density functional theory calculations showed that the band gap of the MoS2 film increased and that the electron effective mass decreased due to the introduction of PGS. In addition, finite difference time domain simulation showed that the electric field in the MoS2 area on the PGS is enhanced compared with that on the flat gallium nitride substrate due to the enhanced light scattering effect of the PGS. The photoresponse of the MoS2/PGS photodetector at 460 nm was also enhanced, with Iph increasing by 5 times, R increasing by 2 times, NEP decreasing to 3.88 × 10-13 W/Hz1/2, and D* increasing to 5.6 × 108 Jones. Our research has important guiding significance in adjusting the band gap of MoS2 and enhancing the photoelectric performance of MoS2 photodetectors.

4.
ACS Appl Mater Interfaces ; 9(6): 5358-5365, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28098970

RESUMO

A new way was meticulously designed to utilize the localized surface plasmon resonance (LSPR) effect and the light scattering effect of silver nanoplate (Ag-nPl) and core-shell Ag@SiO2 nanoparticles (Ag@SiO2-NPs) to enhance the photovoltaic performances of polymer solar cells (PSCs). To prevent direct contact between silver nanoparticles (Ag-NPs) and photoactive materials which will cause electrons quenching, bare Ag-nPl were spin-coated on indium tin oxide and silica capsulated Ag-NPs were incorporated to a PBDTTT-C-T:PC71BM active layer. As a result, the devices incorporated with Ag-nPl and Ag@SiO2-NPs showed great enhancements. With the dual effects of Ag-nPl and Ag@SiO2-NPs in devices, all wavelength sensitization in the visible range was realized; therefore, the power conversion efficiency (PCE) of PSCs showed a great enhancement of 14.0% to 8.46%, with an increased short-circuit current density of 17.23 mA·cm-2. The improved photovoltaic performances of the devices were ascribed to the LSPR effect and the light scattering effect of metallic nanoparticles. Apart from optical effects, the charge collection efficiency of PSCs was improved after the incorporation of Ag-nPl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA