Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107456, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866325

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.

2.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211817

RESUMO

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
3.
Yeast ; 41(5): 315-329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444057

RESUMO

Lipid binding domains and protein lipidations are essential features to recruit proteins to intracellular membranes, enabling them to function at specific sites within the cell. Membrane association can also be exploited to answer fundamental and applied research questions, from obtaining insights into the understanding of lipid metabolism to employing them for metabolic engineering to redirect fluxes. This review presents a broad catalog of membrane binding strategies focusing on the plasma membrane of Saccharomyces cerevisiae. Both lipid binding domains (pleckstrin homology, discoidin-type C2, kinase associated-1, basic-rich and bacterial phosphoinositide-binding domains) and co- and post-translational lipidations (prenylation, myristoylation and palmitoylation) are introduced as tools to target the plasma membrane. To provide a toolset of membrane targeting modules, respective candidates that facilitate plasma membrane targeting are showcased including their in vitro and in vivo properties. The relevance and versatility of plasma membrane targeting modules are further highlighted by presenting a selected set of use cases.


Assuntos
Membrana Celular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transporte Proteico , Metabolismo dos Lipídeos
4.
Cell Tissue Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120736

RESUMO

In goldfish, spinal cord injury triggers the formation of a fibrous scar at the injury site. Regenerating axons are able to penetrate the scar tissue, resulting in the recovery of motor function. Previous findings suggested that regenerating axons enter the scar through tubular structures surrounded by glial elements with laminin-positive basement membranes and that glial processes expressing glial fibrillary acidic protein (GFAP) are associated with axonal regeneration. How glia contribute to promoting axonal regeneration, however, is unknown. Here, we revealed that glial processes expressing vimentin or brain lipid-binding protein (BLBP) also enter the fibrous scar after spinal cord injury in goldfish. Vimentin-positive glial processes were more numerous than GFAP- or BLBP-positive glial processes in the scar tissue. Regenerating axons in the scar tissue were more closely associated with vimentin-positive glial processes than GFAP-positive glial processes. Vimentin-positive glial processes co-expressed matrix metalloproteinase (MMP)-14. Our findings suggest that vimentin-positive glial processes closely associate with regenerating axons through tubular structures entering the scar after spinal cord injury in goldfish. In intact spinal cord, ependymo-radial glial cell bodies express BLBP and their radial processes express vimentin, suggesting that vimentin-positive glial processes derive from migrating ependymo-radial glial cells. MMP-14 expressed in vimentin-positive glial cells and their processes might provide a beneficial environment for axonal regeneration.

5.
Ann Clin Microbiol Antimicrob ; 23(1): 44, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755634

RESUMO

BACKGROUND: Due to their resistance and difficulty in treatment, biofilm-associated infections are problematic among hospitalized patients globally and account for 60% of all bacterial infections in humans. Antibiofilm peptides have recently emerged as an alternative treatment since they can be effectively designed and exert a different mode of biofilm inhibition and eradication. METHODS: A novel antibiofilm peptide, BiF, was designed from the conserved sequence of 18 α-helical antibiofilm peptides by template-assisted technique and its activity was improved by hybridization with a lipid binding motif (KILRR). Novel antibiofilm peptide derivatives were modified by substituting hydrophobic amino acids at positions 5 or 7, and both, with positively charged lysines (L5K, L7K). These peptide derivatives were tested for antibiofilm and antimicrobial activities against biofilm-forming Staphylococcus epidermidis and multiple other microbes using crystal violet and broth microdilution assays, respectively. To assess their impact on mammalian cells, the toxicity of peptides was determined through hemolysis and cytotoxicity assays. The stability of candidate peptide, BiF2_5K7K, was assessed in human serum and its secondary structure in bacterial membrane-like environments was analyzed using circular dichroism. The action of BiF2_5K7K on planktonic S. epidermidis and its effect on biofilm cell viability were assessed via viable counting assays. Its biofilm inhibition mechanism was investigated through confocal laser scanning microscopy and transcription analysis. Additionally, its ability to eradicate mature biofilms was examined using colony counting. Finally, a preliminary evaluation involved coating a catheter with BiF2_5K7K to assess its preventive efficacy against S. epidermidis biofilm formation on the catheter and its surrounding area. RESULTS: BiF2_5K7K, the modified antibiofilm peptide, exhibited dose-dependent antibiofilm activity against S. epidermidis. It inhibited biofilm formation at subinhibitory concentrations by altering S. epidermidis extracellular polysaccharide production and quorum-sensing gene expression. Additionally, it exhibited broad-spectrum antimicrobial activity and no significant hemolysis or toxicity against mammalian cell lines was observed. Its activity is retained when exposed to human serum. In bacterial membrane-like environments, this peptide formed an α-helix amphipathic structure. Within 4 h, a reduction in the number of S. epidermidis colonies was observed, demonstrating the fast action of this peptide. As a preliminary test, a BiF2_5K7K-coated catheter was able to prevent the development of S. epidermidis biofilm both on the catheter surface and in its surrounding area. CONCLUSIONS: Due to the safety and effectiveness of BiF2_5K7K, we suggest that this peptide be further developed to combat biofilm infections, particularly those of biofilm-forming S. epidermidis.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis , Biofilmes/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Hemólise/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
6.
J Nanobiotechnology ; 22(1): 23, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191434

RESUMO

BACKGROUND: Viral diseases continue to pose a major threat to the world's commercial crops. The in-depth exploration and efficient utilization of resistance proteins have become crucial strategies for their control. However, current delivery methods for introducing foreign DNA suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. The nanocarriers provides a convenient channel for the DNA delivery and functional utilization of disease-resistant proteins. RESULTS: In this research, we identified a cysteine-rich venom protein (NbCRVP) in Nicotiana benthamiana for the first time. Virus-induced gene silencing and transient overexpression clarified that NbCRVP could inhibit the infection of tobacco mosaic virus, potato virus Y, and cucumber mosaic virus, making it a broad-spectrum antiviral protein. Yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation revealed that calcium-dependent lipid-binding (CaLB domain) family protein (NbCalB) interacted with NbCRVP to assist NbCRVP playing a stronger antiviral effect. Here, we demonstrated for the first time the efficient co-delivery of DNA expressing NbCRVP and NbCalB into plants using poly(amidoamine) (PAMAM) nanocarriers, achieving stronger broad-spectrum antiviral effects. CONCLUSIONS: Our work presents a tool for species-independent transfer of two interacting protein DNA into plant cells in a specific ratio for enhanced antiviral effect without transgenic integration, which further demonstrated new strategies for nanocarrier-mediated DNA delivery of disease-resistant proteins.


Assuntos
Nicotiana , Vírus de RNA , Nicotiana/genética , Cálcio , DNA , Antivirais/farmacologia
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928500

RESUMO

Hell's Gate globin-I (HGb-I) is a thermally stable globin from the aerobic methanotroph Methylacidiphilium infernorum. Here we report that HGb-I interacts with lipids stoichiometrically to induce structural changes in the heme pocket, changing the heme iron distal ligation coordination from hexacoordinate to pentacoordinate. Such changes in heme geometry have only been previously reported for cytochrome c and cytoglobin, linked to apoptosis regulation and enhanced lipid peroxidation activity, respectively. However, unlike cytoglobin and cytochrome c, the heme iron of HGb-I is altered by lipids in ferrous as well as ferric oxidation states. The apparent affinity for lipids in this thermally stable globin is highly pH-dependent but essentially temperature-independent within the range of 20-60 °C. We propose a mechanism to explain these observations, in which lipid binding and stability of the distal endogenous ligand are juxtaposed as a function of temperature. Additionally, we propose that these coupled equilibria may constitute a mechanism through which this acidophilic thermophile senses the pH of its environment.


Assuntos
Temperatura , Concentração de Íons de Hidrogênio , Globinas/química , Globinas/metabolismo , Lipídeos/química , Heme/metabolismo , Heme/química , Conformação Proteica , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
8.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732184

RESUMO

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy.


Assuntos
Alérgenos , Antígenos de Plantas , Imunoglobulina E , Proteínas de Plantas , Pólen , Humanos , Pólen/imunologia , Pólen/química , Alérgenos/imunologia , Alérgenos/química , Antígenos de Plantas/imunologia , Antígenos de Plantas/química , Imunoglobulina E/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Alnus/imunologia , Alnus/química
9.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338484

RESUMO

The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer's and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, the detailed interactions between the hetero-oligomers and the neuronal membrane are unknown. Using multiscale MD simulations, the lipid binding and protein folding behaviors of hetero-oligomers on asymmetric lipid nanodomains or raft membranes were examined. Our raft membranes contain phase-separated phosphatidylcholine (PC), cholesterol, and anionic phosphatidylserine (PS) or ganglioside (GM1) in one leaflet of the lipid bilayer. The hetero-oligomers bound more strongly to the PS and GM1 than other lipids via the hydrophobic and hydrophilic interactions, respectively, in the raft membranes. The hetero-tetramer disrupted the acyl chain orders of both PC and PS in the PS-containing raft membrane, but only the GM1 in the GM1-containing raft membrane as effectively as the homo-tau-tetramer. We discovered that the alpha-helical content in the heterodimer was greater than the sum of alpha-helical contents from isolated tau and amylin monomers on both raft membranes, indicative of a synergetic effect of tau-amylin interactions in surface-induced protein folding. Our results provide new molecular insights into understanding the cross-talk between Alzheimer's and diabetes.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Peptídeos beta-Amiloides/metabolismo , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Fosfatidilcolinas
10.
Biochim Biophys Acta Biomembr ; 1866(7): 184371, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025256

RESUMO

Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.

11.
Front Allergy ; 5: 1426816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044859

RESUMO

From their expression in their respective allergenic source to their processing by antigen presenting cells, allergens continuously encounter proteases. The ability of allergens to resist to proteolysis by digestive enzymes or host-cell/microbial proteases is considered as an important property that influences their allergenic potential. However, the relationship between proteolytic stability and allergenicity is much more complex and depends on various factors, such as the protein structure dynamics, the exposure level, the route of sensitization, and their respective protease susceptibility. In this review, we summarize and discuss the current knowledge on several aspects of allergen proteolytic stability in different environments including the allergenic sources, routes of sensitization (skin, respiratory tract, gastrointestinal tract) and endolysosomal compartment of antigen-presenting cells. Proteolytic stability alone cannot represent a definitive criterion to allergenicity. The proteolytic susceptibility of allergens in processed extracts can affect allergy diagnosis and immunotherapy. Furthermore, the fine tuning of allergen stability during antigen processing can be exploited for the development of novel immunotherapeutic strategies.

12.
Cells ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474328

RESUMO

Adaptation to changes in the environment depends, in part, on signaling between plant organs to integrate adaptive response at the level of the whole organism. Changes in the delivery of hormones from one organ to another through the vascular system strongly suggest that hormone transport is involved in the transmission of signals over long distances. However, there is evidence that, alternatively, systemic responses may be brought about by other kinds of signals (e.g., hydraulic or electrical) capable of inducing changes in hormone metabolism in distant organs. Long-distance transport of hormones is therefore a matter of debate. This review summarizes arguments for and against the involvement of the long-distance transport of cytokinins in signaling mineral nutrient availability from roots to the shoot. It also assesses the evidence for the role of abscisic acid (ABA) and jasmonates in long-distance signaling of water deficiency and the possibility that Lipid-Binding and Transfer Proteins (LBTPs) facilitate the long-distance transport of hormones. It is assumed that proteins of this type raise the solubility of hydrophobic substances such as ABA and jasmonates in hydrophilic spaces, thereby enabling their movement in solution throughout the plant. This review collates evidence that LBTPs bind to cytokinins, ABA, and jasmonates and that cytokinins, ABA, and LBTPs are present in xylem and phloem sap and co-localize at sites of loading into vascular tissues and at sites of unloading from the phloem. The available evidence indicates a functional interaction between LBTPs and these hormones.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Plantas/metabolismo , Hormônios , Lipídeos
13.
Structure ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39173623

RESUMO

Signal transmission between neurons requires exocytosis of neurotransmitters from the lumen of synaptic vesicles into the synaptic cleft. Following an influx of Ca2+, this process is facilitated by the Ca2+ sensor synaptotagmin-1. The underlying mechanisms involve electrostatic and hydrophobic interactions tuning the lipid preferences of the two C2 domains of synaptotagmin-1; however, the details are still controversially discussed. We, therefore, follow a multidisciplinary approach and characterize lipid and membrane binding of the isolated C2A and C2B domains. We first target interactions with individual lipid species, and then study interactions with model membranes of liposomes. Finally, we perform molecular dynamics simulations to unravel differences in membrane binding. We found that both C2 domains, as a response to Ca2+, insert into the lipid membrane; however, C2A adopts a more perpendicular orientation while C2B remains parallel. These findings allow us to propose a mechanism for synaptotagmin-1 during membrane fusion.

14.
Methods Enzymol ; 701: 47-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025580

RESUMO

Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Sítios de Ligação , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipídeos/química
15.
Elife ; 122024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289224

RESUMO

Ligand-gated ion channels transduce electrochemical signals in neurons and other excitable cells. Aside from canonical ligands, phospholipids are thought to bind specifically to the transmembrane domain of several ion channels. However, structural details of such lipid contacts remain elusive, partly due to limited resolution of these regions in experimental structures. Here, we discovered multiple lipid interactions in the channel GLIC by integrating cryo-electron microscopy and large-scale molecular simulations. We identified 25 bound lipids in the GLIC closed state, a conformation where none, to our knowledge, were previously known. Three lipids were associated with each subunit in the inner leaflet, including a buried interaction disrupted in mutant simulations. In the outer leaflet, two intrasubunit sites were evident in both closed and open states, while a putative intersubunit site was preferred in open-state simulations. This work offers molecular details of GLIC-lipid contacts particularly in the ill-characterized closed state, testable hypotheses for state-dependent binding, and a multidisciplinary strategy for modeling protein-lipid interactions.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Microscopia Crioeletrônica , Sítios de Ligação , Conhecimento , Fosfolipídeos
16.
Biology (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785780

RESUMO

Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper functioning is crucial for many processes, including development, physiology, and response to disease and trauma. Abnormal GJC and HC communication can lead to numerous pathological states including inflammation, skin diseases, deafness, nervous system disorders, and cardiac arrhythmias. Over the last 15 years, high-resolution X-ray and electron cryomicroscopy (cryoEM) structures for seven Cx isoforms have revealed conservation in the four-helix transmembrane (TM) bundle of each subunit; an αß fold in the disulfide-bonded extracellular loops and inter-subunit hydrogen bonding across the extracellular gap that mediates end-to-end docking to form a tight seal between hexamers in the GJC. Tissue injury is associated with cellular Ca2+ overload. Surprisingly, the binding of 12 Ca2+ ions in the Cx26 GJC results in a novel electrostatic gating mechanism that blocks cation permeation. In contrast, acidic pH during tissue injury elicits association of the N-terminal (NT) domains that sterically blocks the pore in a "ball-and-chain" fashion. The NT domains under physiologic conditions display multiple conformational states, stabilized by protein-protein and protein-lipid interactions, which may relate to gating mechanisms. The cryoEM maps also revealed putative lipid densities within the pore, intercalated among transmembrane α-helices and between protomers, the functions of which are unknown. For the future, time-resolved cryoEM of isolated Cx channels as well as cryotomography of GJCs and HCs in cells and tissues will yield a deeper insight into the mechanisms for channel regulation. The cytoplasmic loop (CL) and C-terminal (CT) domains are divergent in sequence and length, are likely involved in channel regulation, but are not visualized in the high-resolution X-ray and cryoEM maps presumably due to conformational flexibility. We expect that the integrated use of synergistic physicochemical, spectroscopic, biophysical, and computational methods will reveal conformational dynamics relevant to functional states. We anticipate that such a wealth of results under different pathologic conditions will accelerate drug discovery related to Cx channel modulation.

17.
Cell Rep ; 43(1): 113601, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38157297

RESUMO

Apicomplexan parasites possess specialized secretory organelles called rhoptries, micronemes, and dense granules that play a vital role in host infection. In this study, we demonstrate that TgREMIND, a protein found in Toxoplasma gondii, is necessary for the biogenesis of rhoptries and dense granules. TgREMIND contains a Fes-CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, which binds to membrane phospholipids, as well as a novel uncharacterized domain that we have named REMIND (regulator of membrane-interacting domain). Both the F-BAR domain and the REMIND are crucial for TgREMIND functions. When TgREMIND is depleted, there is a significant decrease in the abundance of dense granules and abnormal transparency of rhoptries, leading to a reduction in protein secretion from these organelles. The absence of TgREMIND inhibits host invasion and parasite dissemination, demonstrating that TgREMIND is essential for the proper function of critical secretory organelles required for successful infection by Toxoplasma.


Assuntos
Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Parasitos/metabolismo , Fosfatidilinositóis/metabolismo
18.
Cell Calcium ; 123: 102932, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39094223

RESUMO

Transient receptor potential canonical 3 (TRPC3) is a calcium-permeable, non-selective cation channel known to be regulated by components of the phospholipase C (PLC)-mediated signaling pathway, such as Ca2+, diacylglycerol (DAG) and phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). However, the molecular gating mechanism by these regulators is not yet fully understood, especially its regulation by PI(4,5)P2, despite the importance of this channel in cardiovascular pathophysiology. Recently, Clarke et al. (2024) have reported that PI(4,5)P2 is a positive modulator for TRPC3 using molecular dynamics simulations and patch-clamp techniques. They have demonstrated a multistep gating mechanism of TRPC3 with the binding of PI(4,5)P2 to the lipid binding site located at the pre-S1/S1 nexus, and the propagation of PI(4,5)P2 sensing to the pore domain via a salt bridge between the TRP helix and the S4-S5 linker.

19.
Biomolecules ; 13(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136572

RESUMO

Lipid transfer proteins (LTPs) realize their functions in plants due to their ability to bind and transport various ligands. Structures of many LTPs have been studied; however, the mechanism of ligand binding and transport is still not fully understood. In this work, we studied the role of Lys61 and Lys81 located near the "top" and "bottom" entrances to the hydrophobic cavity of the lentil lipid transfer protein Lc-LTP2, respectively, in these processes. Using site-directed mutagenesis, we showed that both amino acid residues played a key role in lipid binding to the protein. In experiments with calcein-loaded liposomes, we demonstrated that both the above-mentioned lysine residues participated in the protein interaction with model membranes. According to data obtained from fluorescent spectroscopy and TNS probe displacement, both amino acid residues are necessary for the ability of the protein to transfer lipids between membranes. Thus, we hypothesized that basic amino acid residues located at opposite entrances to the hydrophobic cavity of the lentil Lc-LTP2 played an important role in initial protein-ligand interaction in solution as well as in protein-membrane docking.


Assuntos
Lens (Planta) , Lens (Planta)/genética , Ligantes , Lisina , Lipídeos
20.
Acta bioquím. clín. latinoam ; 47(2): 307-314, abr.-jun. 2013. ilus
Artigo em Espanhol | LILACS | ID: lil-694555

RESUMO

Luego de la ingesta, el epitelio del intestino delgado está encargado de asimilar grandes cantidades de nutrientes, como aminoácidos, glúcidos y ácidos grasos. Las proteínas solubles que unen lípidos cumplirían un rol determinante en este proceso, sobre todo protegiendo la integridad del tejido contra el efecto simil-detergente de los ácidos grasos provenientes de la dieta. En enterocitos se expresan dos proteínas que unen ácidos grasos de cadena larga, IFABP y LFABP, para las cuales no se conocen bien aún sus funciones específicas, o el porqué de la necesidad de dos proteínas aparentemente equivalentes. Este laboratorio se ha enfocado en el estudio comparativo de estas dos proteínas empleando distintas variantes estructurales y métodos bioquímicos, biofísicos, y de biología molecular y celular. Así, se han podido definir los determinantes moleculares de cada proteína responsables de la interacción con membranas, los mecanismos de transferencia de ligandos y los factores que modulan estas propiedades. Más recientemente, se han extendido estos ensayos a cultivos celulares donde se ha correlacionado la expresión de estas proteínas con la secreción de citoquinas, la proliferación y la diferenciación celular. El estudio de estas proteínas es de gran importancia por su potencial como blancos terapéuticos y su utilidad en el diagnóstico de injurias tisulares.


After ingestion, the epithelium of the small intestine is responsible for assimilating large amounts of nutrients such as amino acids, sugars and fatty acids. Soluble lipid binding proteins fulfill a determining role in this process, especially protecting the tissue integrity against the detergent-like effect of fatty acids from the diet. Two proteins that bind long-chain fatty acids are expressed in enterocytes, IFABP and LFABP, whose specific functions are still poorly understood, or the reason for the need of two apparently equivalent proteins. Our laboratory has focused on the comparative study of these two proteins using structural variants and biochemical, biophysical, and molecular and cellular biology approaches. Thus, the molecular determinants responsible for the interaction with membranes were defined for each protein, their ligand transfer mechanism and the factors that modulate these properties. More recently, these assays have been extended to cell culture studies which correlate the expression of these proteins with cytokine secretion, cell proliferation and differentiation. The study of these proteins is of great importance due to their potential as therapeutic targets and their usefulness in the diagnosis of tissue injury.


Após a ingestão, o epitélio do intestino delgado é responsável pela assimilação de uma grande quantidade de nutrientes, tais como aminoácidos, glicídios e ácidos graxos. As proteínas solúveis que ligam lipídeos desempenhariam um papel determinante neste processo, principalmente protegendo a integridade do tecido contra o efeito detergente dos ácidos graxos da dieta. Nos enterócitos se expressam duas proteínas que ligam ácidos graxos de cadeia longa, IFABP e LFABP; cujas funções específicas ainda não são muito conhecidas, ou não se conhece o motivo pelo qual são necessárias duas proteínas aparentemente equivalentes. Nosso laboratório tem se focado no estudo comparativo destas duas proteínas utilizando variantes estruturais e métodos bioquímicos, biofísicos, e de biologia molecular e celular. Assim, foi possível definir os determinantes moleculares de cada proteína responsáveis pela interação com membranas, os mecanismos da transferência de ligantes e os fatores que modulam essas propriedades. Mais recentemente, estendemos estes ensaios para culturas celulares, correlacionando a expressão destas proteínas com a secreção de citocinas, a proliferação e a diferenciação celular. O estudo destas proteínas é de grande importância por seu potencial como alvos terapêuticos e sua utilidade no diagnóstico de lesões teciduais.


Assuntos
Humanos , Proteínas de Transporte de Ácido Graxo/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/ultraestrutura , Biomarcadores , Fluorescência , Proteína 3 Ligante de Ácido Graxo , Mucosa Intestinal , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA