Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.132
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 51(5): 915-929.e7, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732167

RESUMO

The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Lipossomos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD4/química , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Complemento C3/imunologia , Complemento C3/metabolismo , Apresentação Cruzada/imunologia , Epitopos/imunologia , Glicosilação , Infecções por HIV/virologia , Humanos , Imunoglobulina G/imunologia , Modelos Moleculares , Testes de Neutralização , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
2.
Stem Cells ; 42(7): 607-622, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717908

RESUMO

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Lipossomos , Pseudópodes , Lipossomos/metabolismo , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Pseudópodes/metabolismo , Pseudópodes/efeitos dos fármacos , DNA/metabolismo , Transfecção , Endocitose/efeitos dos fármacos
3.
Mol Cell ; 68(4): 673-685.e6, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149595

RESUMO

Vms1 translocates to damaged mitochondria in response to stress, whereupon its binding partner, Cdc48, contributes to mitochondrial protein homeostasis. Mitochondrial targeting of Vms1 is mediated by its conserved mitochondrial targeting domain (MTD), which, in unstressed conditions, is inhibited by intramolecular binding to the Vms1 leucine-rich sequence (LRS). Here, we report a 2.7 Å crystal structure of Vms1 that reveals that the LRS lies in a hydrophobic groove in the autoinhibited MTD. We also demonstrate that the oxidized sterol, ergosterol peroxide, is necessary and sufficient for Vms1 localization to mitochondria, through binding the MTD in an interaction that is competitive with binding to the LRS. These data support a model in which stressed mitochondria generate an oxidized sterol receptor that recruits Vms1 to support mitochondrial protein homeostasis.


Assuntos
Ergosterol/análogos & derivados , Mitocôndrias , Transporte Proteico , Saccharomyces cerevisiae , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Ergosterol/metabolismo , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Allergy Clin Immunol ; 153(3): 549-559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926124

RESUMO

Food allergy is a growing public health issue among children and adults that can lead to life-threatening anaphylaxis following allergen exposure. The criterion standard for disease management includes food avoidance and emergency epinephrine administration because current allergen-specific immunotherapy treatments are limited by adverse events and unsustained desensitization. A promising approach to remedy these shortcomings is the use of nanoparticle-based therapies that disrupt disease-driving immune mechanisms and induce more sustained tolerogenic immune pathways. The pathophysiology of food allergy includes multifaceted interactions between effector immune cells, including lymphocytes, antigen-presenting cells, mast cells, and basophils, mainly characterized by a TH2 cell response. Regulatory T cells, TH1 cell responses, and suppression of other major allergic effector cells have been found to be major drivers of beneficial outcomes in these nanoparticle therapies. Engineered nanoparticle formulations that have shown efficacy at reducing allergic responses and revealed new mechanisms of tolerance include polymeric-, lipid-, and emulsion-based nanotherapeutics. This review highlights the recent engineering design of these nanoparticles, the mechanisms induced by them, and their future potential therapeutic targets.


Assuntos
Hipersensibilidade Alimentar , Nanopartículas , Criança , Adulto , Humanos , Dessensibilização Imunológica , Alimentos , Alérgenos
5.
Nano Lett ; 24(3): 920-928, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207109

RESUMO

Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Vacinas contra COVID-19 , Análise Custo-Benefício , Lipossomos
6.
Nano Lett ; 24(26): 8151-8161, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912914

RESUMO

The size of liposomal drugs has been demonstrated to strongly correlate with their pharmacokinetics and pharmacodynamics. While the microfluidic method successfully achieves the production of liposomes with well-controlled sizes across various buffer/lipid flow rate ratio (FRR) settings, any adjustments to the FRR inevitably influence the concentration, encapsulation efficiency (EE), and stability of liposomal drugs. Here we describe a controllable cavitation-on-a-chip (CCC) strategy that facilitates the precise regulation of liposomal drug size at any desired FRR. The CCC-enabled size-specific liposomes exhibited striking differences in uptake and biodistribution behaviors, thereby demonstrating distinct antitumor efficacy in both tumor-bearing animal and melanoma patient-derived organoid (PDO) models. Intriguingly, as the liposome size decreased to approximately 80 nm, the preferential accumulation of liposomal drugs in the liver transitioned to a predominant enrichment in the kidneys. These findings underscore the considerable potential of our CCC approach in influencing the pharmacokinetics and pharmacodynamics of liposomal nanomedicines.


Assuntos
Dispositivos Lab-On-A-Chip , Lipossomos , Lipossomos/química , Animais , Humanos , Camundongos , Distribuição Tecidual , Tamanho da Partícula , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/patologia
7.
J Cell Mol Med ; 28(11): e18477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853458

RESUMO

Given the pathological role of Tau aggregation in Alzheimer's disease (AD), our laboratory previously developed the novel Tau aggregation inhibitor peptide, RI-AG03. As Tau aggregates accumulate intracellularly, it is essential that the peptide can traverse the cell membrane. Here we examine the cellular uptake and intracellular trafficking of RI-AG03, in both a free and liposome-conjugated form. We also characterize the impact of adding the cell-penetrating peptide (CPP) sequences, polyarginine (polyR) or transactivator of transcription (TAT), to RI-AG03. Our data show that liposome conjugation of CPP containing RI-AG03 peptides, with either the polyR or TAT sequence, increased cellular liposome association three-fold. Inhibition of macropinocytosis modestly reduced the uptake of unconjugated and RI-AG03-polyR-linked liposomes, while having no effect on RI-AG03-TAT-conjugated liposome uptake. Further supporting macropinocytosis-mediated internalization, a 'fair' co-localisation of the free and liposome-conjugated RI-AG03-polyR peptide with macropinosomes and lysosomes was observed. Interestingly, we also demonstrate that RI-AG03-polyR detaches from liposomes following cellular uptake, thereby largely evading organellar entrapment. Collectively, our data indicate that direct membrane penetration and macropinocytosis are key routes for the internalization of liposomes conjugated with CPP containing RI-AG03. Our study also demonstrates that peptide-liposomes are suitable nanocarriers for the cellular delivery of RI-AG03, furthering their potential use in targeting Tau pathology in AD.


Assuntos
Peptídeos Penetradores de Células , Lipossomos , Nanopartículas , Pinocitose , Proteínas tau , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Lipossomos/química , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Nanopartículas/química , Pinocitose/efeitos dos fármacos , Peptídeos/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Lisossomos/metabolismo , Sistemas de Liberação de Medicamentos/métodos
8.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
9.
J Biol Chem ; 299(12): 105384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898398

RESUMO

Perilipins (PLINs) constitute an evolutionarily conserved family of proteins that specifically associate with the surface of lipid droplets (LDs). These proteins function in LD biogenesis and lipolysis and help to stabilize the surface of LDs. PLINs are typically composed of three different protein domains. They share an N-terminal PAT domain of unknown structure and function, a central region containing 11-mer repeats that form amphipathic helices, and a C-terminal domain that adopts a 4-helix bundle structure. How exactly these three distinct domains contribute to PLIN function remains to be determined. Here, we show that the N-terminal PAT domain of PLIN3 binds diacylglycerol (DAG), the precursor to triacylglycerol, a major storage lipid of LDs. PLIN3 and its PAT domain alone bind liposomes with micromolar affinity and PLIN3 binds artificial LDs containing low concentrations of DAG with nanomolar affinity. The PAT domain of PLIN3 is predicted to adopt an amphipathic triangular shaped structure. In silico ligand docking indicates that DAG binds to one of the highly curved regions within this domain. A conserved aspartic acid residue in the PAT domain, E86, is predicted to interact with DAG, and we found that its substitution abrogates high affinity binding of DAG as well as DAG-stimulated association with liposome and artificial LDs. These results indicate that the PAT domain of PLINs harbor specific lipid-binding properties that are important for targeting these proteins to the surface of LDs and to ER membrane domains enriched in DAG to promote LD formation.


Assuntos
Diglicerídeos , Perilipina-3 , Diglicerídeos/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Perilipina-1 , Perilipina-2/metabolismo , Perilipina-3/química , Perilipina-3/metabolismo , Domínios Proteicos , Proteínas/metabolismo , Humanos
10.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L458-L467, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349117

RESUMO

This study addressed the efficacy of a liposome-encapsulated nine amino acid peptide [peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2)] for the prevention or treatment of acute lung injury (ALI) +/- sepsis. PIP-2 inhibits the PLA2 activity of peroxiredoxin 6 (Prdx6), thereby preventing rac release and activation of NADPH oxidases (NOXes), types 1 and 2. Female Yorkshire pigs were infused intravenously with lipopolysaccharide (LPS) + liposomes (untreated) or LPS + PIP-2 encapsulated in liposomes (treated). Pigs were mechanically ventilated and continuously monitored; they were euthanized after 8 h or earlier if preestablished humane endpoints were reached. Control pigs (mechanical ventilation, no LPS) were essentially unchanged over the 8 h study. LPS administration resulted in systemic inflammation with manifestations of clinical sepsis-like syndrome, decreased lung compliance, and a marked decrease in the arterial Po2 with vascular instability leading to early euthanasia of 50% of untreated animals. PIP-2 treatment significantly reduced the requirement for supportive vasopressors and the manifestations of lung injury so that only 25% of animals required early euthanasia. Bronchoalveolar lavage fluid from PIP-2-treated versus untreated pigs showed markedly lower levels of total protein, cytokines (TNF-α, IL-6, IL-1ß), and myeloperoxidase. Thus, the porcine LPS-induced sepsis-like model was associated with moderate to severe lung pathophysiology compatible with ALI, whereas treatment with PIP-2 markedly decreased lung injury, cardiovascular instability, and early euthanasia. These results indicate that inhibition of reactive oxygen species (ROS) production via NOX1/2 has a beneficial effect in treating pigs with LPS-induced ALI plus or minus a sepsis-like syndrome, suggesting a potential role for PIP-2 in the treatment of ALI and/or sepsis in humans.NEW & NOTEWORTHY Currently available treatments that can alter lung inflammation have failed to significantly alter mortality of acute lung injury (ALI). Peroxiredoxin 6 PLA2 inhibitory peptide-2 (PIP-2) targets the liberation of reactive O2 species (ROS) that is associated with adverse cell signaling events, thereby decreasing the tissue oxidative injury that occurs early in the ALI syndrome. We propose that treatment with PIP-2 may be effective in preventing progression of early disease into its later stages with irreversible lung damage and relatively high mortality.


Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Feminino , Animais , Suínos , Lipopolissacarídeos/farmacologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Peroxirredoxina VI/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Peptídeos/farmacologia , Sepse/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologia
11.
Mol Microbiol ; 120(5): 723-739, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800599

RESUMO

DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.


Assuntos
Antifúngicos , Criptococose , Humanos , Antifúngicos/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Anfotericina B/farmacologia , Anfotericina B/química , Candida albicans
12.
Antimicrob Agents Chemother ; 68(1): e0095523, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38092678

RESUMO

The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.


Assuntos
Antifúngicos , Candida , Humanos , Antifúngicos/farmacologia , Candida auris , Lipossomos , Testes de Sensibilidade Microbiana , Biofilmes
13.
Biochem Biophys Res Commun ; 734: 150636, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39250873

RESUMO

Injuries of the respiratory system caused by viral infections (e.g., by influenza virus, respiratory syncytial virus, metapneumovirus, or coronavirus) can lead to long-term complications or even life-threatening conditions. The challenges of treatment of such diseases have become particularly pronounced during the recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One promising drug is the anti-fibrinolytic and anti-inflammatory protease inhibitor aprotinin, which has demonstrated considerable inhibition of the replication of some viruses. Encapsulation of aprotinin in liposomes can significantly improve the effectiveness of the drug, however, the use of nanoparticles as carriers of aprotinin can radically change its biodistribution in the body. Here we show that the liposomal form of aprotinin accumulates more efficiently in the lungs, heart, and kidneys than the molecular form by side-by-side comparison of the ex vivo biodistribution of these two fluorescently labeled formulations in mice using bioimaging. In particular, we synthesized liposomes of different compositions and studied their accumulation in various organs and tissues. Direct comparison of the biodistributions of liposomal and free aprotinin showed that liposomes accumulated in the lungs 1.82 times more effectively, and in the heart and kidneys - 3.56 and 2.00 times, respectively. This suggests that the liposomal formulation exhibits a longer residence time in the target organ and, thus, has the potential for a longer therapeutic effect. The results reveal the great potential of the aprotinin-loaded liposomes for the treatment of respiratory system injuries and heart- and kidney-related complications of viral infections.

14.
Biochem Biophys Res Commun ; 709: 149806, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579619

RESUMO

Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.


Assuntos
Antineoplásicos , Bicamadas Lipídicas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfolipídeos/química , Membranas Artificiais , Lipossomos/química
15.
Small ; : e2400816, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949047

RESUMO

Intracellular reactive oxygen species (ROS) in steatotic cells pose a problem due to their potential to cause oxidative stress and cellular damage. Delivering engineered phospholipids to intracellular lipid droplets in steatotic hepatic cells, using the cell's inherent intracellular lipid transport mechanisms are investigated. Initially, it is shown that tail-labeled fluorescent lipids assembled into liposomes are able to be transported to intracellular lipid droplets in steatotic HepG2 cells and HHL-5 cells. Further, an antioxidant, an EUK salen-manganese derivative, which has superoxide dismutase-like and catalase-like activity, is covalently conjugated to the tail of a phospholipid and formulated as liposomes for administration. Steatotic HepG2 cells and HHL-5 cells incubated with these antioxidant liposomes have lower intracellular ROS levels compared to untreated controls and non-covalently formulated antioxidants. This first proof-of-concept study illustrates an alternative strategy to equip native organelles in mammalian cells with engineered enzyme activity.

16.
Small ; 20(9): e2304534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849036

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Nanovacinas , SARS-CoV-2 , Escherichia coli , Lipossomos , COVID-19/prevenção & controle , Lipídeos
17.
Small ; : e2406182, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189532

RESUMO

Gene therapy and sonodynamic therapy, as emerging treatment methods, have great potential in cancer treatment. However, there are significant challenges in the in vivo delivery of genes and sonosensitizers during the treatment process, which ultimately affects the therapeutic outcome. In this study, an ultrasound-sensitive targeted liposome nanoparticle system (MLipsiBcl-2) is developed to deliver the sonosensitizers and siRNA for the synergistic treatment of hepatocellular carcinoma. Generation of reactive oxygen species (ROS) by MLipsiBcl-2 can be initiated through ultrasound stimulation, leading to liposome rupture and release of the sonosensitizer and small interfering RNA (siRNA). Furthermore, ROS can disrupt lysosomal membranes, facilitating gene release for downregulating overexpressed antiapoptotic protein levels in cancer cells. Experimental results from in vitro and in vivo studies demonstrated the efficacy of synergistic treatment on hepatocellular carcinoma cells and the high biocompatibility of MLipsiBcl-2 under ultrasound stimulation. The advancement of this ultrasound-sensitive targeted gene delivery system shows potential as a versatile therapeutic platform that is easily operable, presenting a prospect for a synergistic treatment approach across various cancer types.

18.
Small ; : e2307462, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342698

RESUMO

The response to treatment is substantially varied between individual patients with ovarian cancer. However, chemotherapy treatment plans rarely pay sufficient attention to the mentioned factors. Instead, standardized treatment protocols are usually employed for most ovarian cancer patients. Variations in an individual's sensitivity to drugs significantly limit the effectiveness of treatment in some patients and lead to severe toxicities in others. In the present investigation, a nanotechnology-based approach for personalized treatment of ovarian carcinoma (the most lethal type of gynecological cancer) constructed on the individual genetic profile of the patient's tumor is developed and validated. The expression of predefined genes and proteins is analyzed for each patient sample. Finally, a mixture of the complex nanocarrier-based targeted delivery system containing drug(s)/siRNA(s)/targeted peptide is selected from the pre-synthesized bank and tested in vivo on murine cancer model using cancer cells isolated from tumors of each patient. Based on the results of the present study, an innovative approach and protocol for personalized treatment of ovarian cancer are suggested and evaluated. The results of the present study clearly show the advantages and perspectives of the proposed individual treatment approach.

19.
Small ; 20(25): e2309031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258399

RESUMO

Liposomes are widely used in the biological field due to their good biocompatibility and surface modification properties. With the development of biochemistry and material science, many liposome structures and their surface functional components have been modified and optimized one by one, pushing the liposome platform from traditional to functionalized and intelligent, which will better satisfy and expand the needs of scientific research. However, a main limiting factor effecting the efficiency of liposomes is the complicated environmental conditions in the living body. Currently, in order to overcome the above problem, functionalized liposomes have become a very promising strategy. In this paper, binding strategies of liposomes with four main functional elements, namely nucleic acids, antibodies, peptides, and stimuli-responsive motif have been summarized for the first time. In addition, based on the construction characteristics of functionalized liposomes, such as drug-carrying, targeting, long-circulating, and stimulus-responsive properties, a comprehensive overview of their features and respective research progress are presented. Finally, the paper critically presents the limitations of these functionalized liposomes in the current applications and also prospectively suggests the future development directions, aiming to accelerate realization of their industrialization.


Assuntos
Lipossomos , Lipossomos/química , Humanos , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/química
20.
Small ; : e2401990, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004869

RESUMO

This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA