RESUMO
Plastids are sites for carotenoid biosynthesis and accumulation, but detailed information on fruit plastid development and its relation to carotenoid accumulation remains largely unclear. Here, using Baisha (BS; white-fleshed) and Luoyangqing (LYQ; red-fleshed) loquat (Eriobotrya japonica), a detailed microscopic analysis of plastid development during fruit ripening was carried out. In peel cells, chloroplasts turned into smaller chromoplasts in both cultivars, and the quantity of plastids in LYQ increased by one-half during fruit ripening. The average number of chromoplasts per peel cell in fully ripe fruit was similar between the two cultivars, but LYQ peel cell plastids were 20% larger and had a higher colour density, associated with the presence of larger plastoglobules. In flesh cells, chromoplasts could be observed only in LYQ during the middle and late stages of ripening, and the quantity on a per-cell basis was higher than that in peel cells, but the size of chromoplasts was smaller. It was concluded that chromoplasts are derived from the direct conversion of chloroplasts to chromoplasts in the peel, and from de novo differentiation of proplastids into chromoplasts in flesh. The relationship between plastid development and carotenoid accumulation is discussed.
Assuntos
Eriobotrya/citologia , Eriobotrya/genética , Frutas/citologia , Frutas/genética , Células Vegetais/metabolismo , Plastídeos/genética , Carotenoides/metabolismo , Eriobotrya/anatomia & histologia , Eriobotrya/metabolismo , Frutas/anatomia & histologia , Frutas/metabolismo , Microscopia , Fenótipo , Células Vegetais/ultraestruturaRESUMO
Differences in carotenoid accumulation between tissues and cultivars is common in plants. White-fleshed loquat cultivars had low levels of carotenoids in the flesh, but accumulated carotenoids in peel when ripe, and the leaves accumulated similar carotenoids to those in the red-fleshed loquat cultivars. The catalytic activity and expression patterns of four phytoene synthase (PSY) genes, EjPSY1, EjPSY2A, EjPSY2B, and EjPSY3, were analysed to understand their roles in different loquat (Eriobotrya japonica Lindl.) types. EjPSY1 was responsible for carotenoid synthesis in the fruit peel but not the flesh, whereas EjPSY2A was responsible for carotenoid accumulation in flesh of ripening fruit. A mutant EjPSY2A (d) , with the same tissue specificity and expression level as EjPSY2A, but lacking the C-terminal region and corresponding catalytic activity, was discovered in white-fleshed varieties, explaining the lack of carotenoids in the white flesh. The catalytic role of EjPSY2B was most significant in leaves. The tissue-specific expression of EjPSY1 and EjPSY2B explained well how peel and leaf tissues can still accumulate carotenoids in white-fleshed cultivars, which have lost the functional EjPSY2A. EjPSY3 mRNA abundance was ~1000-fold less than that of other PSY mRNAs in all tissues examined. In addition, neither the normal sized transcript nor two alternatively spliced forms, EjPSY3α in LYQ and EjPSY3ß in BS cultivars, encoded functional enzymes, and it is concluded that EjPSY3 plays no role in carotenoid accumulation. In addition, it was noted that recruitment of PSY genes for expression in specific tissues of different plants has occurred independently of gene structure and evolutionary origin.
Assuntos
Carotenoides/metabolismo , Ecótipo , Eriobotrya/enzimologia , Eriobotrya/genética , Genes de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Especificidade de Órgãos/genética , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Teste de Complementação Genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Fenótipo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.
RESUMO
Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to signiï¬cantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 µg/mL) displayed a similar therapeutic effect as TSG at 200 µg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound.
Assuntos
Eriobotrya/química , Glicosídeos/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/farmacologia , Colesterol/metabolismo , Citocromo P-450 CYP2E1/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Glicosídeos/administração & dosagem , Glicosídeos/isolamento & purificação , Células Hep G2 , Humanos , Malondialdeído/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Oleico/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta , Sesquiterpenos/administração & dosagem , Sesquiterpenos/isolamento & purificação , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismoRESUMO
As a master regulator involved in flower development, LEAFY-like gene has been demonstrated to play a key role in the flowering process regulation of angiosperms. Expression analysis of EjLFY-1, a LEAFY (LFY) homolog of loquat (Eriobotrya japonica Lindl.), indicated its participation in the regulation of flowering in loquat. To verify its function and potential value in the genetic engineering to shorten the juvenile phase, ectopic expression of EjLFY-1 in strawberry (Fragaria × ananassa) was achieved using Agrobacterium-mediated gene transfer of a plant expression vector with the loquat EjLFY-1 gene driven by the CaMV 35S promoter. Totally 59 plantlets were verified to be the transformants. The presence, expression and integration of EjLFY-1 in the transformants were assessed by PCR, quantitative real-time PCR and Southern blot, respectively. Constitutive expression of EjLFY-1 in strawberry accelerated the flowering process in strawberry with the shorten necessary period for flowering induction, development of flower and fruit set. While vegetative growth habits of the transformants in the first cropping season were consistent with the WT ones. Meanwhile, both the flowers and fruits of the transformants were also as same as those of the WT ones. Furthermore, the early-flowering habit was maintained in their asexual progeny, the runner plants. While with continuous asexual propagation, the clones showed a more strengthen early-flowering phenotype, such as the reduced vegetative growth and the abnormal floral organs in individual plantlets. These results demonstrated the function of this gene and at the same time provided us new insights into the utilization potential of such genes in the genetic engineering of perennial fruits.
RESUMO
We examined the inhibitory effects of loquat methanol extract on the adhesion, migration, invasion and matrix metalloproteinase (MMP) activities of MDA-MB-231 human breast cancer cell line. Cells were cultured with DMSO or with 10, 25, or 50 microg/ml of loquat methanol extract. Both leaf and seed extracts significantly inhibited growth of MDA-MB-231 cells in a dose-dependent manner, although leaf extract was more effective. Adhesion and migration were significantly inhibited by loquat extracts in a dose-dependent manner. Loquat extract also inhibited the invasion of breast cancer cells in a dose-dependent manner and leaf extract was more effective than seed extract. MMP-2 and MMP-9 activities were also inhibited by loquat extract. Our results indicate that methanol extracts of loquat inhibit the adhesion, migration and invasion of human breast cancer cells partially through the inhibition of MMP activity and leaf extract has more anti-metastatic effects in cell based assay than seed extract. Clinical application of loquat extract as a potent chemopreventive agent may be helpful in limiting breast cancer invasion and metastasis.