Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Genet ; 102(3): 218-222, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35599435

RESUMO

The biallelic variations of the LNPK gene are associated with the "neurodevelopmental disorder with epilepsy and hypoplasia of the corpus callosum" phenotype [MIM:618090] in the Online Mendelian Inheritance In Men database, and so far, two families have been identified in the literature. A third family with novel clinical features, who bears a novel variant in LNPK (NM_030650.3: c.770delA, p.D257fs*31) is described in the present study. The coexistence of psychomotor regression and neurodegeneration in brain magnetic resonance imaging was found for the first time in the present study, thanks to the long-term follow-up data on the case, which contributed to the phenotypic and mutation spectrum by means of the novel variation.


Assuntos
Encéfalo , Corpo Caloso , Atrofia/genética , Atrofia/patologia , Encéfalo/patologia , Corpo Caloso/patologia , Humanos , Mutação , Fenótipo
2.
Diabetologia ; 64(4): 890-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33501603

RESUMO

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Proteínas de Homeodomínio/genética , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade Materna/genética , Obesidade Materna/patologia , Fenótipo , Gravidez , Transdução de Sinais
3.
Am J Hum Genet ; 103(2): 296-304, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30032983

RESUMO

The dynamic shape of the endoplasmic reticulum (ER) is a reflection of its wide variety of critical cell biological functions. Consequently, perturbation of ER-shaping proteins can cause a range of human phenotypes. Here, we describe three affected children (from two consanguineous families) who carry homozygous loss-of-function mutations in LNPK (previously known as KIAA1715); this gene encodes lunapark, which is proposed to serve as a curvature-stabilizing protein within tubular three-way junctions of the ER. All individuals presented with severe psychomotor delay, intellectual disability, hypotonia, epilepsy, and corpus callosum hypoplasia, and two of three showed mild cerebellar hypoplasia and atrophy. Consistent with a proposed role in neurodevelopmental disease, LNPK was expressed during brain development in humans and mice and was present in neurite-like processes in differentiating human neural progenitor cells. Affected cells showed the absence of full-length lunapark, aberrant ER structures, and increased luminal mass density. Together, our results implicate the ER junction stabilizer lunapark in establishing the corpus callosum.


Assuntos
Retículo Endoplasmático/genética , Proteínas de Homeodomínio/genética , Mutação/genética , Adolescente , Animais , Atrofia/genética , Diferenciação Celular/genética , Criança , Corpo Caloso/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Proteínas de Membrana , Camundongos , Hipotonia Muscular/genética , Fenótipo , Transtornos Psicomotores/genética , Células-Tronco/patologia
4.
J Cell Sci ; 132(4)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670475

RESUMO

The endoplasmic reticulum (ER) is a major membrane-bound organelle in all eukaryotic cells. This organelle comprises morphologically distinct domains, including the nuclear envelope and peripheral sheets and tubules. The tubules are connected by three-way junctions into a network. Several membrane proteins have been implicated in network formation; curvature-stabilizing proteins generate the tubules themselves, and membrane-anchored GTPases fuse tubules into a network. Recent experiments have shown that a tubular network can be formed with reconstituted proteoliposomes containing the yeast membrane-fusing GTPase Sey1 and a curvature-stabilizing protein of either the reticulon or REEP protein families. The network forms in the presence of GTP and is rapidly disassembled when GTP hydrolysis of Sey1 is inhibited, indicating that continuous membrane fusion is required for its maintenance. Atlastin, the ortholog of Sey1 in metazoans, forms a network on its own, serving both as a fusion and curvature-stabilizing protein. These results show that the reticular ER can be generated by a surprisingly small set of proteins, and represents an energy-dependent steady state between formation and disassembly. Models for the molecular mechanism by which curvature-stabilizing proteins cooperate with fusion GTPases to form a reticular network have been proposed, but many aspects remain speculative, including the function of additional proteins, such as the lunapark protein, and the mechanism by which the ER interacts with the cytoskeleton. How the nuclear envelope and peripheral ER sheets are formed remain major unresolved questions in the field. Here, we review reconstitution experiments with purified curvature-stabilizing proteins and fusion GTPases, discuss mechanistic implications and point out open questions.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteolipídeos/metabolismo , Citoesqueleto de Actina/ultraestrutura , Fenômenos Biomecânicos , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Fusão de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Membrana Nuclear/ultraestrutura , Proteolipídeos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
5.
New Phytol ; 219(3): 990-1004, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797722

RESUMO

The plant endoplasmic reticulum (ER) is crucial to the maintenance of cellular homeostasis. The ER consists of a dynamic and continuously remodelling network of tubules and cisternae. Several conserved membrane proteins have been implicated in formation and maintenance of the ER network in plants, such as RHD3 and the reticulon proteins. Despite the recent work in mammalian and yeast cells, the detailed molecular mechanisms of ER network organization in plants remain largely unknown. Recently, novel ER network-shaping proteins called Lunapark (LNP) have been identified in yeast and mammalian cells. Here we identify two Arabidopsis LNP homologues and investigate their subcellular localization via confocal microscopy and potential function in shaping the ER network using protein-protein interaction assays and mutant analysis. We show that AtLNP1 overexpression in tobacco leaf epidermal cells mainly labels cisternae in the ER network, whereas AtLNP2 labels the whole ER. Overexpression of LNP proteins results in an increased abundance of ER cisternae and lnp1 and lnp1lnp2 amiRNA lines display a reduction in cisternae and larger polygonal areas. Thus, we hypothesize that AtLNP1 and AtLNP2 are involved in determining the network morphology of the plant ER, possibly by regulating the formation of ER cisternae.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Mutação com Perda de Função/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 112(2): 418-23, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548161

RESUMO

The endoplasmic reticulum (ER) consists of a polygonal network of sheets and tubules interconnected by three-way junctions. This network undergoes continual remodeling through competing processes: the branching and fusion of tubules forms new three-way junctions and new polygons, and junction sliding and ring closure leads to polygon loss. However, little is known about the machinery required to generate and maintain junctions. We previously reported that yeast Lnp1 localizes to ER junctions, and that loss of Lnp1 leads to a collapsed, densely reticulated ER network. In mammalian cells, only approximately half the junctions contain Lnp1. Here we use live cell imaging to show that mammalian Lnp1 (mLnp1) affects ER junction mobility and hence network dynamics. Three-way junctions with mLnp1 are less mobile than junctions without mLnp1. Newly formed junctions that acquire mLnp1 remain stable within the ER network, whereas nascent junctions that fail to acquire mLnp1 undergo rapid ring closure. These findings imply that mLnp1 plays a key role in stabilizing nascent three-way ER junctions.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteolipídeos/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única
7.
J Biol Chem ; 291(35): 18252-62, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27387505

RESUMO

The endoplasmic reticulum (ER) network comprises sheets and tubules that are connected by dynamic three-way junctions. Lunapark (Lnp) localizes to and stabilizes ER three-way junctions by antagonizing the small GTPase Atlastin, but how Lnp shapes the ER network is unclear. Here, we used an affinity purification approach and mass spectrometry to identify Lnp as an interacting partner of the ER protein quality control ubiquitin ligase gp78. Accordingly, Lnp purified from mammalian cells has a ubiquitin ligase activity in vitro Intriguingly, biochemical analyses show that this activity can be attributed not only to associated ubiquitin ligase, but also to an intrinsic ubiquitin ligase activity borne by Lnp itself. This activity is contained in the N-terminal 45 amino acids of Lnp although this segment does not share homology to any known ubiquitin ligase motifs. Despite its interaction with gp78, Lnp does not seem to have a broad function in degradation of misfolded ER proteins. On the other hand, the N-terminal ubiquitin ligase-bearing motif is required for the ER three-way junction localization of Lnp. Our study identifies a new type of ubiquitin ligase and reveals a potential link between ubiquitin and ER morphology regulation.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Homeodomínio/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico , Receptores do Fator Autócrino de Motilidade/genética
8.
Proc Natl Acad Sci U S A ; 111(49): E5243-51, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25404289

RESUMO

The peripheral endoplasmic reticulum (ER) forms different morphologies composed of tubules and sheets. Proteins such as the reticulons shape the ER by stabilizing the high membrane curvature in cross-sections of tubules and sheet edges. Here, we show that membrane curvature along the edge lines is also critical for ER shaping. We describe a theoretical model that explains virtually all observed ER morphologies. The model is based on two types of curvature-stabilizing proteins that generate either straight or negatively curved edge lines (R- and S-type proteins). Dependent on the concentrations of R- and S-type proteins, membrane morphologies can be generated that consist of tubules, sheets, sheet fenestrations, and sheet stacks with helicoidal connections. We propose that reticulons 4a/b are representatives of R-type proteins that favor tubules and outer edges of sheets. Lunapark is an example of S-type proteins that promote junctions between tubules and sheets. In a tubular ER network, lunapark stabilizes three-way junctions, i.e., small triangular sheets with concave edges. The model agrees with experimental observations and explains how curvature-stabilizing proteins determine ER morphology.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células COS , Chlorocebus aethiops , Elasticidade , Células HEK293 , Proteínas de Homeodomínio/química , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência , Modelos Biológicos , Conformação Proteica , Interferência de RNA , Fatores de Tempo , Xenopus laevis
9.
Methods Mol Biol ; 2772: 49-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411806

RESUMO

The plant endoplasmic reticulum forms a network of tubules connected by three-way junctions or sheet-like cisternae. Although the network is three-dimensional, in many plant cells, it is constrained to thin volume sandwiched between the vacuole and plasma membrane, effectively restricting it to a 2-D planar network. The structure of the network, and the morphology of the tubules and cisternae can be automatically extracted following intensity-independent edge-enhancement and various segmentation techniques to give an initial pixel-based skeleton, which is then converted to a graph representation. ER dynamics can be determined using optical flow techniques from computer vision or persistency analysis. Collectively, this approach yields a wealth of quantitative metrics for ER structure and can be used to describe the effects of pharmacological treatments or genetic manipulation. The software is publicly available.


Assuntos
Benchmarking , Retículo Endoplasmático , Membrana Celular , Alimentos , Células Vegetais
10.
Autophagy ; 18(4): 937-938, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100068

RESUMO

The endoplasmic reticulum (ER) forms a contiguous network of tubules and sheets. When errors in protein folding occur, misfolded proteins accumulate in the ER. Proteostasis can be restored by ER quality control pathways. Reticulophagy is an ER quality control pathway that uses resident autophagy receptors to link an ER domain to the autophagy machinery. We recently showed that the reticulophagy receptor RTN3L recruits the COPII cargo adaptor SEC24C to target disease-causing mutant proinsulin INS2Akita puncta to the lysosome for degradation. When reticulophagy is disrupted and delivery to the lysosome is blocked, large INS2Akita puncta accumulate in the ER. Photobleach analysis revealed that these puncta behave like liquid condensates and not aggregates, as previously suggested. Other reticulophagy substrates that are segregated into tubules behave like INS2Akita, whereas a substrate of the ER sheets receptor, RETREG1/FAM134B, appears to be less fluid. Large INS2Akita puncta also accumulate when ER sheets are proliferated by the loss of LNPK, or by overproduction of the sheets-producing protein, CKAP4/CLIMP63. Restoring the tubular network by overexpressing reticulons reverses this phenotype. Our findings revealed that fluid-like deleterious cargoes are segregated into tubules to prevent them from expanding and affecting cell health while they are waiting to undergo reticulophagy.


Assuntos
Autofagia , Proteostase , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Lisossomos/metabolismo
11.
Cell Rep ; 37(10): 110077, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879280

RESUMO

Viruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown. Here 3D focused ion beam scanning electron microscopy (FIB-SEM) reconstruction reveals that the ER focus structure consists of multi-tubular ER junctions where SV40 preferentially localizes, suggesting that tubular branch points are virus ER-to-cytosol penetration sites. Functional analysis demonstrates that lunapark-an ER membrane protein that typically stabilizes three-way ER junctions-relocates to the ER foci, where it supports focus formation, leading to SV40 ER escape and infection. Our results reveal how a virus repurposes the activity of an ER membrane protein to form a virus-induced ER substructure required for membrane escape and suggest that ER tubular junctions are vulnerable sites exploited by viruses for membrane penetration.


Assuntos
Citosol/virologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Vírus 40 dos Símios/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Masculino , Proteínas de Membrana/genética , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/ultraestrutura
12.
Viruses ; 13(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206552

RESUMO

The endoplasmic reticulum (ER) of eukaryotic cells is a dynamic organelle, which undergoes continuous remodeling. At the three-way tubular junctions of the ER, the lunapark (LNP) protein acts as a membrane remodeling factor to stabilize these highly curved membrane junctions. In addition, during flavivirus infection, the ER membrane is invaginated to form vesicles (Ve) for virus replication. Thus, LNP may have roles in the generation or maintenance of the Ve during flavivirus infection. In this study, our aim was to characterize the functions of LNP during flavivirus infection and investigate the underlying mechanisms of these functions. To specifically study virus replication, we generated cell lines expressing replicons of West Nile virus (Kunjin strain) or Langat virus. By using these replicon platforms and electron microscopy, we showed that depletion of LNP resulted in reduced virus replication, which is due to its role in the generation of the Ve. By using biochemical assays and high-resolution microscopy, we found that LNP is recruited to the Ve and the protein interacts with the nonstructural protein (NS) 4B. Therefore, these data shed new light on the interactions between flavivirus and host factors during viral replication.


Assuntos
Flavivirus/química , Flavivirus/fisiologia , Proteínas de Membrana/genética , Replicação Viral/genética , Células A549 , Animais , Linhagem Celular , Cricetinae , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Retículo Endoplasmático/virologia , Flavivirus/classificação , Flavivirus/genética , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia
13.
Elife ; 102021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34467852

RESUMO

The endoplasmic reticulum (ER) is composed of sheets and tubules. Here we report that the COPII coat subunit, SEC24C, works with the long form of the tubular ER-phagy receptor, RTN3, to target dominant-interfering mutant proinsulin Akita puncta to lysosomes. When the delivery of Akita puncta to lysosomes was disrupted, large puncta accumulated in the ER. Unexpectedly, photobleach analysis indicated that Akita puncta behaved as condensates and not aggregates, as previously suggested. Akita puncta enlarged when either RTN3 or SEC24C were depleted, or when ER sheets were proliferated by either knocking out Lunapark or overexpressing CLIMP63. Other ER-phagy substrates that are segregated into tubules behaved like Akita, while a substrate (type I procollagen) that is degraded by the ER-phagy sheets receptor, FAM134B, did not. Conversely, when ER tubules were augmented in Lunapark knock-out cells by overexpressing reticulons, ER-phagy increased and the number of large Akita puncta was reduced. Our findings imply that segregating cargoes into tubules has two beneficial roles. First, it localizes mutant misfolded proteins, the receptor, and SEC24C to the same ER domain. Second, physically restraining condensates within tubules, before they undergo ER-phagy, prevents them from enlarging and impacting cell health.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proinsulina/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lisossomos , Camundongos Knockout , Agregados Proteicos , Dobramento de Proteína
14.
Cell Rep ; 31(7): 107664, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433973

RESUMO

Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Culina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ubiquitinação , Peixe-Zebra
15.
Protein Cell ; 10(7): 510-525, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30498943

RESUMO

Three-way junctions are characteristic structures of the tubular endoplasmic reticulum (ER) network. Junctions are formed through atlastin (ATL)-mediated membrane fusion and stabilized by lunapark (Lnp). However, how Lnp is preferentially enriched at three-way junctions remains elusive. Here, we showed that Lnp loses its junction localization when ATLs are deleted. Reintroduction of ATL1 R77A and ATL3, which have been shown to cluster at the junctions, but not wild-type ATL1, relocates Lnp to the junctions. Mutations in the N-myristoylation site or hydrophobic residues in the coiled coil (CC1) of Lnp N-terminus (NT) cause mis-targeting of Lnp. Conversely, deletion of the lunapark motif in the C-terminal zinc finger domain, which affects the homo-oligomerization of Lnp, does not alter its localization. Purified Lnp-NT attaches to the membrane in a myristoylation-dependent manner. The mutation of hydrophobic residues in CC1 does not affect membrane association, but compromises ATL interactions. In addition, Lnp-NT inhibits ATL-mediated vesicle fusion in vitro. These results suggest that CC1 in Lnp-NT contacts junction-enriched ATLs for proper localization; subsequently, further ATL activity is limited by Lnp after the junction is formed. The proposed mechanism ensures coordinated actions of ATL and Lnp in generating and maintaining three-way junctions.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Ligação ao GTP/isolamento & purificação , Humanos , Proteínas de Membrana/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA