Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cell ; 185(20): 3739-3752.e18, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36113465

RESUMO

Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.


Assuntos
Cistina , Prótons , Sistemas de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Humanos , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Dev Cell ; 40(2): 151-167, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28017618

RESUMO

Lysosomes rely on their resident transporter proteins to return products of catabolism to the cell for reuse and for cellular signaling, metal storage, and maintaining the lumenal environment. Despite their importance, little is known about the lifetime of these transporters or how they are regulated. Using Saccharomyces cerevisiae as a model, we discovered a new pathway intrinsic to homotypic lysosome membrane fusion that is responsible for their degradation. Transporter proteins are selectively sorted by the docking machinery into an area between apposing lysosome membranes, which is internalized and degraded by lumenal hydrolases upon organelle fusion. These proteins have diverse lifetimes that are regulated in response to protein misfolding, changing substrate levels, or TOR activation. Analogous to endocytosis for controlling surface protein levels, the "intralumenal fragment pathway" is critical for lysosome membrane remodeling required for organelle function in the context of cellular protein quality control, ion homeostasis, and metabolism.


Assuntos
Lisossomos/metabolismo , Fusão de Membrana , Proteínas de Membrana Transportadoras/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia/efeitos dos fármacos , Cicloeximida/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
Brain Res ; 1557: 12-25, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24530433

RESUMO

PAT4, the fourth member of the SLC36/proton dependent amino acid transporter (PAT) family, is a high-affinity, low capacity electroneutral transporter of neutral amino acids like proline and tryptophan. It has also been associated with the function of mTORC1, a complex in the mammalian target of rapamycin (mTOR) pathway. We performed in situ hybridization and immunohistological analysis to determine the expression profile of PAT4, as well as an RT-PCR study on tissue from mice exposed to leucine. We performed a phylogenetic analysis to determine the evolutionary origin of PAT4. The in situ hybridization and the immunohistochemistry on mouse brain sections and hypothalamic cells showed abundant PAT4 expression in the mouse brain intracellularly in both inhibitory and excitatory neurons, partially co-localizing with lysosomal markers and epithelial cells lining the ventricles. Its location in epithelial cells around the ventricles indicates a transport of substrates across the blood brain barrier. Phylogenetic analysis showed that PAT4 belongs to an evolutionary old family most likely predating animals, and PAT4 is the oldest member of that family.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Neurônios/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Western Blotting , Encéfalo/irrigação sanguínea , Membrana Celular/metabolismo , Expressão Gênica , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipotálamo/irrigação sanguínea , Hipotálamo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Leucina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA