Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244546

RESUMO

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Assuntos
Adenosina/análogos & derivados , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Microscopia Crioeletrônica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Iniciação/genética
2.
Mol Cell ; 84(12): 2320-2336.e6, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906115

RESUMO

2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.


Assuntos
Regiões 3' não Traduzidas , Estabilidade de RNA , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Processamento Pós-Transcricional do RNA , Sequenciamento por Nanoporos/métodos , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina
3.
Mol Cell ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39303720

RESUMO

Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with-and regulate-RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m6A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.

4.
Mol Cell ; 82(3): 645-659.e9, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051350

RESUMO

Pseudouridine is a modified nucleotide that is prevalent in human mRNAs and is dynamically regulated. Here, we investigate when in their life cycle mRNAs become pseudouridylated to illuminate the potential regulatory functions of endogenous mRNA pseudouridylation. Using single-nucleotide resolution pseudouridine profiling on chromatin-associated RNA from human cells, we identified pseudouridines in nascent pre-mRNA at locations associated with alternatively spliced regions, enriched near splice sites, and overlapping hundreds of binding sites for RNA-binding proteins. In vitro splicing assays establish a direct effect of individual endogenous pre-mRNA pseudouridines on splicing efficiency. We validate hundreds of pre-mRNA sites as direct targets of distinct pseudouridine synthases and show that PUS1, PUS7, and RPUSD4-three pre-mRNA-modifying pseudouridine synthases with tissue-specific expression-control widespread changes in alternative pre-mRNA splicing and 3' end processing. Our results establish a vast potential for cotranscriptional pre-mRNA pseudouridylation to regulate human gene expression via alternative pre-mRNA processing.


Assuntos
Processamento Alternativo , Transferases Intramoleculares/metabolismo , Processamento de Terminações 3' de RNA , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Transferases Intramoleculares/genética , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Precursores de RNA/genética , RNA Mensageiro/genética
5.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756105

RESUMO

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Assuntos
Adenosina/análogos & derivados , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estabilidade de RNA , Adenosina/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Biológicos , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
6.
Mol Cell ; 74(6): 1304-1316.e8, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031084

RESUMO

N7-methylguanosine (m7G) is a positively charged, essential modification at the 5' cap of eukaryotic mRNA, regulating mRNA export, translation, and splicing. m7G also occurs internally within tRNA and rRNA, but its existence and distribution within eukaryotic mRNA remain to be investigated. Here, we show the presence of internal m7G sites within mammalian mRNA. We then performed transcriptome-wide profiling of internal m7G methylome using m7G-MeRIP sequencing (MeRIP-seq). To map this modification at base resolution, we developed a chemical-assisted sequencing approach that selectively converts internal m7G sites into abasic sites, inducing misincorporation at these sites during reverse transcription. This base-resolution m7G-seq enabled transcriptome-wide mapping of m7G in human tRNA and mRNA, revealing distribution features of the internal m7G methylome in human cells. We also identified METTL1 as a methyltransferase that installs a subset of m7G within mRNA and showed that internal m7G methylation could affect mRNA translation.


Assuntos
Mapeamento Cromossômico/métodos , Guanosina/análogos & derivados , Metiltransferases/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Transcriptoma , Animais , Sequência de Bases , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Guanosina/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Transcrição Reversa
7.
RNA ; 30(5): 530-536, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531650

RESUMO

Pseudouridine is an abundant mRNA modification found in diverse organisms ranging from bacteria and viruses to multicellular plants and humans. New developments in pseudouridine profiling provide quantitative tools to map mRNA pseudouridylation sites. Sparse biochemical studies establish the potential for mRNA pseudouridylation to affect most stages of the mRNA life cycle from birth to death. This recent progress sets the stage for deeper investigations into the molecular and cellular functions of specific mRNA pseudouridines, including in disease.


Assuntos
RNA Mensageiro , Pesquisa , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Transferases Intramoleculares/metabolismo , Transcrição Gênica , Precursores de RNA/química , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Biossíntese de Proteínas , Ligação Proteica , Humanos , Animais , Pesquisa/tendências
8.
Proc Natl Acad Sci U S A ; 119(12): e2116251119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290126

RESUMO

RNA modifications regulate a variety of cellular processes including DNA repair.The RNA methyltransferase TRDMT1 generates methyl-5-cytosine (m5C) on messen-ger RNA (mRNA) at DNA double-strand breaks (DSBs) in transcribed regions, pro-moting transcription-coupled homologous recombination (HR). Here, we identifiedthat Fragile X mental retardation protein (FMRP) promotes transcription-coupled HRvia its interaction with both the m5C writer TRDMT1 and the m5C eraser ten-eleventranslocation protein 1 (TET1). TRDMT1, FMRP, and TET1 function in a temporalorder at the transcriptionally active sites of DSBs. FMRP displays a higher affinity forDNA:RNA hybrids containing m5C-modified RNA than for hybrids without modifica-tion and facilitates demethylation of m5C by TET1 in vitro. Loss of either the chroma-tin- or RNA-binding domain of FMRP compromises demethylation of damage-inducedm5C in cells. Importantly, FMRP is required for R-loop resolving in cells. Due to unre-solved R-loop and m5C preventing completion of DSB repair, FMRP depletion or lowexpression leads to delayed repair of DSBs at transcriptionally active sites and sensitizescancer cells to radiation in a BRCA-independent manner. Together, ourfindings presentan m5C reader, FMRP, which acts as a coordinator between the m5C writer and eraserto promote mRNA-dependent repair and cell survival in cancer.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Citosina , Desmetilação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Recombinação Homóloga , Humanos , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Cytokine ; 173: 156388, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039694

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic and uncontrolled inflammatory bowel disease. N6-methyladenine (m6A) is a reversible mRNA modification method. IGF2BP2 is an RNA-binding protein regulated by m6A methylation. However, understanding of m6A-related proteins in UC is limited. This study was to analyze the function and related mechanism of IGF2BP2 in UC. METHODS: The UC models were established by dextran sulfate sodium (DSS) in NCM460 cells and mice. The expression of IGF2BP2 and GPX4 in UC were detected by qPCR and western blot. The effects of IGF2BP2 on inflammation, ferroptosis and colon injury were measured by gain- and loss-of-function experiments. This study conducted a clinical evaluation of mice using the Disease Activity Index score. The molecular mechanism of IGF2BP2 in ferroptosis were analyzed by m6A RNA methylation quantification kit, RNA immunoprecipitation-qPCR analysis, and RNA stability assay. RESULTS: IGF2BP2 and GPX4 were under-expressed in DSS-treated UC. IGF2BP2 enhanced the stability of GPX4 mRNA modified by m6A. IGF2BP2 overexpression repressed the ROS, MDA, and iron levels but enhanced the GSH and GPX4 levels in DSS-triggered NCM460 cells, which were partially reversed by GPX4 silencing. In UC mice, IGF2BP2 high-expression ameliorated symptoms, Disease Activity Index score, pathological changes, inflammatory reaction, and ferroptosis, which were also partly neutralized by GPX4 inhibition. CONCLUSIONS: IGF2BP2 augmented the GPX4 expression by the m6A modification to weaken UC progression via suppressing ferroptosis.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Células Epiteliais , Inflamação , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
10.
Angew Chem Int Ed Engl ; : e202411598, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150042

RESUMO

As a promising gene therapy strategy, controllable small molecule-mRNA covalent modification in tumor cells could be initiated by singlet oxygen (1O2) to complete the modification process. However, in vivo generation of 1O2 is usually dependent on excitation of external light, and the limited light penetration of tissues greatly interferes the development of deep tumor phototherapy. Here, we constructed a tumor-targeting nano-micelle for the spontaneous intracellular generation of 1O2 without the need for external light, and inducing a high level of covalent modification of mRNA in tumor cells. Luminal and Ce6 were chemically bonded to produce 1O2 by chemiluminescence resonance energy transfer (CRET) triggered by high levels of hydrogen peroxide (H2O2) in the tumor microenvironment. The sufficient 1O2 oxidized the loaded furan to highly reactive dicarbonyl moiety, which underwent cycloaddition reaction with adenine (A), cytosine (C) or guanine (G) on the mRNA for interfering with the tumor cell protein expression, thereby inhibiting tumor progression. In vitro and in vivo experiments demonstrated that this self-initiated gene therapy nano-micelle could induce covalent modification of mRNA by 1O2 without external light, and the process could be monitored in real time by fluorescence imaging, which provided an effective strategy for RNA-based tumor gene therapy.

11.
Toxicol Appl Pharmacol ; 477: 116688, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716414

RESUMO

Chemical modifications in messenger RNA (mRNA) regulate gene expression and play critical roles in stress responses and diseases. Recently we have shown that N6-methyladenosine (m6A), the most abundant mRNA modification, promotes the repair of UVB-induced DNA damage by regulating global genome nucleotide excision repair (GG-NER). However, the roles of other mRNA modifications in the UVB-induced damage response remain understudied. N4-acetylcytidine (ac4C) is deposited in mRNA by the RNA-binding acetyltransferase NAT10. This NAT10-mediated ac4C in mRNA has been reported to increase both mRNA stability and translation. However, the role of ac4C and NAT10 in the UVB-induced DNA damage response remains poorly understood. Here we show that NAT10 plays a critical role in the repair of UVB-induced DNA damage lesions through regulating the expression of the key GG-NER gene DDB2. We found that knockdown of NAT10 enhanced the repair of UVB-induced DNA damage lesions by promoting the mRNA stability of DDB2. Our findings are in contrast to the previously reported role of NAT10-mediated ac4C deposition in promoting mRNA stability and may represent a novel mechanism for ac4C in the UVB damage response. Furthermore, NAT10 knockdown in skin cancer cells decreased skin cancer cell proliferation in vitro and tumorigenicity in vivo. Chronic UVB irradiation increases NAT10 protein levels in mouse skin. Taken together, our findings demonstrate a novel role for NAT10 in the repair of UVB-induced DNA damage products by decreasing the mRNA stability of DDB2 and suggest that NAT10 is a potential novel target for preventing and treating skin cancer.


Assuntos
Dano ao DNA , Neoplasias Cutâneas , Animais , Camundongos , Reparo do DNA , Raios Ultravioleta/efeitos adversos , Neoplasias Cutâneas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Cell Mol Life Sci ; 79(10): 511, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066650

RESUMO

Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.


Assuntos
Doenças Neurodegenerativas , Epigênese Genética , Humanos , Ativação de Macrófagos , Microglia/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , RNA não Traduzido/genética
13.
Plant J ; 106(6): 1759-1775, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33843075

RESUMO

As the most abundant internal modification of mRNA, N6 -methyladenosine (m6 A) methylation of RNA is emerging as a new layer of epitranscriptomic gene regulation in cellular processes, including embryo development, flowering-time control, microspore generation and fruit ripening, in plants. However, the cellular role of m6 A in plant responses to environmental stimuli remains largely unexplored. In this study, we show that m6 A methylation plays an important role in salt stress tolerance in Arabidopsis. All mutants of m6 A writer components, including MTA, MTB, VIRILIZER (VIR) and HAKAI, displayed salt-sensitive phenotypes in an m6 A-dependent manner. The vir mutant, in which the level of m6 A was most highly reduced, exhibited salt-hypersensitive phenotypes. Analysis of the m6 A methylome in the vir mutant revealed a transcriptome-wide loss of m6 A modification in the 3' untranslated region (3'-UTR). We demonstrated further that VIR-mediated m6 A methylation modulates reactive oxygen species homeostasis by negatively regulating the mRNA stability of several salt stress negative regulators, including ATAF1, GI and GSTU17, through affecting 3'-UTR lengthening linked to alternative polyadenylation. Our results highlight the important role played by epitranscriptomic mRNA methylation in the salt stress response of Arabidopsis and indicate a strong link between m6 A methylation and 3'-UTR length and mRNA stability during stress adaptation.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Tolerância ao Sal/genética , Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas/fisiologia , Metilação , RNA Mensageiro/genética , RNA de Plantas/genética , Espécies Reativas de Oxigênio , Sais/toxicidade , Transcriptoma
14.
Plant Biotechnol J ; 20(12): 2245-2257, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36002976

RESUMO

Plants inevitably encounter environmental adversities, including abiotic and biotic stresses, which significantly impede plant growth and reduce crop yield. Thus, fine-tuning the fate and function of stress-responsive RNAs is indispensable for plant survival under such adverse conditions. Recently, post-transcriptional RNA modifications have been studied as a potent route to regulate plant gene expression under stress. Among over 160 mRNA modifications identified to date, N6 -methyladenosine (m6 A) in mRNAs is notable because of its multifaceted roles in plant development and stress response. Recent transcriptome-wide mapping has revealed the distribution and patterns of m6 A in diverse stress-responsive mRNAs in plants, building a foundation for elucidating the molecular link between m6 A and stress response. Moreover, the identification and characterization of m6 A writers, readers and erasers in Arabidopsis and other model crops have offered insights into the biological roles of m6 A in plant abiotic stress responses. Here, we review the recent progress of research on mRNA modifications, particularly m6 A, and their dynamics, distribution, regulation and biological functions in plant stress responses. Further, we posit potential strategies for breeding stress-tolerant crops by engineering mRNA modifications and propose the future direction of research on RNA modifications to gain a much deeper understanding of plant stress biology.


Assuntos
Arabidopsis , Melhoramento Vegetal , Desenvolvimento Vegetal , Produtos Agrícolas , Genes de Plantas , RNA Mensageiro/genética
15.
RNA ; 26(12): 1815-1837, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32820035

RESUMO

Chemical modifications enable preparation of mRNAs with augmented stability and translational activity. In this study, we explored how chemical modifications of 5',3'-phosphodiester bonds in the mRNA body and poly(A) tail influence the biological properties of eukaryotic mRNA. To obtain modified and unmodified in vitro transcribed mRNAs, we used ATP and ATP analogs modified at the α-phosphate (containing either O-to-S or O-to-BH3 substitutions) and three different RNA polymerases-SP6, T7, and poly(A) polymerase. To verify the efficiency of incorporation of ATP analogs in the presence of ATP, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitative assessment of modification frequency based on exhaustive degradation of the transcripts to 5'-mononucleotides. The method also estimated the average poly(A) tail lengths, thereby providing a versatile tool for establishing a structure-biological property relationship for mRNA. We found that mRNAs containing phosphorothioate groups within the poly(A) tail were substantially less susceptible to degradation by 3'-deadenylase than unmodified mRNA and were efficiently expressed in cultured cells, which makes them useful research tools and potential candidates for future development of mRNA-based therapeutics.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Oligonucleotídeos Fosforotioatos/química , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , RNA Polimerases Dirigidas por DNA/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células HeLa , Humanos , Camundongos , Poli A/química , Poli A/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/química , RNA Mensageiro/genética , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 116(46): 23068-23074, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31672910

RESUMO

Chemical modifications of RNAs have long been established as key modulators of nonprotein-coding RNA structure and function in cells. There is a growing appreciation that messenger RNA (mRNA) sequences responsible for directing protein synthesis can also be posttranscriptionally modified. The enzymatic incorporation of mRNA modifications has many potential outcomes, including changing mRNA stability, protein recruitment, and translation. We tested how one of the most common modifications present in mRNA coding regions, pseudouridine (Ψ), impacts protein synthesis using a fully reconstituted bacterial translation system and human cells. Our work reveals that replacing a single uridine nucleotide with Ψ in an mRNA codon impedes amino acid addition and EF-Tu GTPase activation. A crystal structure of the Thermus thermophilus 70S ribosome with a tRNAPhe bound to a ΨUU codon in the A site supports these findings. We also find that the presence of Ψ can promote the low-level synthesis of multiple peptide products from a single mRNA sequence in the reconstituted translation system as well as human cells, and increases the rate of near-cognate Val-tRNAVal reacting on a ΨUU codon. The vast majority of Ψ moieties in mRNAs are found in coding regions, and our study suggests that one consequence of the ribosome encountering Ψ can be to modestly alter both translation speed and mRNA decoding.


Assuntos
Biossíntese de Proteínas , Pseudouridina/metabolismo , RNA Bacteriano/genética , RNA Mensageiro/genética , Thermus thermophilus/genética , Códon/genética , Códon/metabolismo , Fases de Leitura Aberta , Elongação Traducional da Cadeia Peptídica , Pseudouridina/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Uridina/metabolismo
17.
RNA ; 25(3): 336-351, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530625

RESUMO

The nearly conserved U54 of tRNA is mostly converted to a version of ribothymidine (T) in Bacteria and eukaryotes and to a version of pseudouridine (Ψ) in Archaea. Conserved U55 is nearly always modified to Ψ55 in all organisms. Orthologs of TrmA and TruB that produce T54 and Ψ55, respectively, in Bacteria and eukaryotes are absent in Archaea. Pus10 produces both Ψ54 and Ψ55 in Archaea. Pus10 orthologs are found in nearly all sequenced archaeal and most eukaryal genomes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in most archaeal tRNAs and some animal tRNAs, but its absence from yeast and bacteria. Moreover, Ψ54 is found in several tRNAs that function as primers for retroviral DNA synthesis. Previously, no eukaryotic tRNA Ψ54 synthase had been identified. We show here that human Pus10 can produce Ψ54 in select tRNAs, including tRNALys3, the primer for HIV reverse transcriptase. This synthase activity of Pus10 is restricted to the cytoplasm and is distinct from nuclear Pus10, which is known to be involved in apoptosis. The sequence GUUCAm1AAUC (m1A is 1-methyladenosine) at position 53-61 of tRNA along with a stable acceptor stem results in maximum Ψ54 synthase activity. This recognition sequence is unique for a Ψ synthase in that it contains another modification. In addition to Ψ54, SF9 cells-derived recombinant human Pus10 can also generate Ψ55, even in tRNAs that do not contain the Ψ54 synthase recognition sequence. This activity may be redundant with that of TruB.


Assuntos
Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Pseudouridina/biossíntese , RNA de Transferência/genética , Animais , Archaea/genética , Archaea/metabolismo , Sequência de Bases , Citoplasma , Ativação Enzimática , Humanos , Mamíferos/genética , Proteólise , Processamento Pós-Transcricional do RNA , RNA Arqueal , Proteínas Recombinantes , Elementos de Resposta , Seleção Genética
18.
Mol Syst Biol ; 16(11): e10025, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33251765

RESUMO

Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6 A and m5 C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high-throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR-seq). Using CIGAR-seq, we discovered NSUN6 as a novel mRNA m5 C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non-overlapping subsets of mRNA m5 C sites and together contributed to almost all the m5 C modification in mRNA. Finally, using m1 A as an example, we demonstrated that CIGAR-seq can be easily adapted for identifying regulators of other mRNA modification.


Assuntos
Sistemas CRISPR-Cas/genética , Metiltransferases/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/análise , tRNA Metiltransferases/genética
19.
Cancer Cell Int ; 21(1): 413, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362389

RESUMO

BACKGROUND: Increasing evidence has demonstrated the critical roles of mRNA modification regulators on multiple types of cancers. However, it is still poorly known about the prognostic and therapeutic value of mRNA modification regulators in HNSCC. METHODS: The gene expression profile of 36 mRNA modification regulators and their corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Stepwise regression in R with both directions was used to construct a model for the prognosis of HNSCC. Univariate Cox regression survival analysis was performed to identify the most significant risk gene. Gene set enrichment analysis (GSEA) was applied to determine the cancer-associated pathways with NAT10. Immunohistochemistry (IHC) staining was performed to evaluate the expression of NAT10 in formalin fixed paraffin-embedded (FFPE) samples of HNSCC. Univariate and multivariate Cox regression survival analysis performed to identify the independent risk factors associated with the OS of patients with HNSCC. HNSCC cell lines (Cal-27, FaDu, and Detroit-562) were transfected with short interfering RNA (siRNA) targeting NAT10 or treated with Remodelin, a small-molecule inhibitor of NAT10. Knockdown efficiency of siRNA was assessed by quantitative real-time PCR (qRT-PCR) and western blotting. In addition, CCK-8 assay, scratch assay and transwell assay were used to examine the proliferation, migration, and invasion abilities of the three HNSCC cell lines after NAT10 was inhibited genetically and pharmaceutically. Cell cycle and cell apoptosis assays were performed by flow cytometry. Finally, the therapeutic value of Remodelin in HNSCC was evaluated via a patient-derived xenograft (PDX) model. The statistical analysis was performed with SPSS 23.0. RESULTS: A risk prediction model containing 10 mRNA modification regulators was constructed and showed prognostic value in HNSCC. NAT10 was further identified as a key risk gene and independent prognostic factor in TCGA HNSCC dataset. The GSEA analysis suggested that high NAT10 expression was associated with MYC, E2F, G2M checkpoint, mTORC1, DNA repair and oxidative phosphorylation pathways. NAT10 protein expression was significantly up-regulated in tumour cells compared to normal epithelial cells in FFPE samples and increased NAT10 protein expression was correlated with poor overall survival of 267 HNSCC patients. Genetic depletion of NAT10 using siRNA or chemical inhibition of NAT10 using Remodelin resulted in reduced cell proliferation, migration and invasion abilities in Cal-27, FaDu and Detroit-562 cells. Knockdown of NAT10 using siRNA significantly increased cell cycle arrest in S/G2-phase. Remodelin significantly inhibited tumour growth and tumour cell proliferation in the PDX model of HNSCC. CONCLUSIONS: NAT10 could be a potential prognostic marker and a therapeutic target for HNSCC.

20.
Proc Natl Acad Sci U S A ; 115(3): E382-E389, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298914

RESUMO

Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.


Assuntos
Códon de Terminação/genética , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Nucleotídeos , Terminação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA