Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 24(10): 3125-3132, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421805

RESUMO

Dilute magnetic semiconductors (DMSs) have attracted much attention because of their potential use in spintronic devices. Here, we demonstrate the observation of robust ferromagnetism in a solution-processable halide perovskite semiconductor with dilute magnetic ions. By codoping of magnetic (Fe2+) and aliovalent (Bi3+) metal ions into CH3NH3PbCl3 (MAPbCl3) perovskite, ferromagnetism with well-saturated magnetic hysteresis loops and a maximum coercivity field of 1280 Oe was observed below 12 K. The ferromagnetic resonance measurements revealed that the incorporation of aliovalent ions modulates the carrier concentration and plays an essential role in realizing the ferromagnetism in dilute magnetic halide perovskites. Magnetic ions are proposed to interact through itinerant charge carriers to achieve ferromagnetic coupling. Our work provides a new avenue for the development of solution-processable magnetic semiconductors.

2.
Nano Lett ; 24(34): 10554-10561, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39151058

RESUMO

Low-dimensional metal halide perovskites have unique optical and electrical properties that render them attractive for the design of diluted magnetic semiconductors. However, the nature of dopant-exciton exchange interactions that result in spin-polarization of host-lattice charge carriers as a basis for spintronics remains unexplored. Here, we investigate Mn2+-doped CsPbCl3 nanocrystals using magnetic circular dichroism spectroscopy and show that Mn2+ dopants induce excitonic Zeeman splitting which is strongly dependent on the nature of the band-edge structure. We demonstrate that the largest splitting corresponds to exchange interactions involving the excited state at the M-point along the spin-orbit split-off conduction band edge. This splitting gives rise to an absorption-like C-term excitonic MCD signal, with the estimated effective g-factor (geff) of ca. 70. The results of this work help resolve the assignment of absorption transitions observed for metal halide perovskite nanocrystals and allow for a design of new diluted magnetic semiconductor materials for spintronics applications.

3.
Nanotechnology ; 35(39)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838646

RESUMO

Transition metal (TM) ion doping in II-VI semiconductors can produce exciton magnetic polarons (EMPs) and localized EMPs containing longitudinal optical (LO) phonon coupling, which will be discussed in this paper. TM ion doping in II-VI semiconductors for a dilute magnetic semiconductor show emission via magnetic polarons (MPs) together with hot carrier effects that need to be understood via its optical properties. The high excitation power that is responsible for hot carrier effects suppresses the charge trapping effect in low exciton binding energy (8.12 meV) semiconductors, even at room temperature (RT). The large polaron radius exhibits strong interaction between the carrier and MP, resulting in anharmonicity effects, in which the side-band energy overtone to LO phonons. The photon-like polaritons exhibit polarized spin interactions with LO phonons that show strong spin-phonon polaritons at RT. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free excitons (FX) and FXs interacting with 2LO phonon-spin interactions, corresponding to3T1(3F) →1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at3T1(3F) →1E(1G). In addition, other d-d transitions of single Ni ions (600-900 nm) appear at the low-energy side. RT energy shifts of 14-38 meV are observed due to localized states with density-of-states tails extending far into the bandgap-related spin-induced localization at the valence band. These results show spin-spin magnetic coupling and spin-phonon interactions at RT that open up a more realistic new horizon of optically controlled dilute magnetic semiconductor applications.

4.
Nanotechnology ; 35(26)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467061

RESUMO

For applications in magneto-electronic devices, diluted magnetic semiconductors (DMSs) usually exhibit spin-dependent coupling and induced ferromagnetism at high Curie temperatures. The processes behind the behavior of optical emission and ferromagnetism, which can be identified by complicated microstructural and chemical characteristics, are still not well understood. In this study, the impact of Al co-doping on the electronic, optical, and magnetic properties of Ni(II) doped ZnO monolayers has been investigated using first principles calculations. Ferromagnetism in the co-doped monolayer is mainly triggered by the exchange coupling between the electrons provided by Al co-doping and Ni(II)-dstates; therefore, the estimated Curie temperature is greater than room temperature. The spin-spin couplings in mono-doped and co-doped monolayers were explained using the band-coupling mechanism. Based on the optical study, we observed that the Ni-related absorption peak occurred at 2.13-2.17 eV, showing a redshift as Ni concentrations increased. The FM coupling between Ni ions in the co-doped monolayer may be responsible for the reduction in the fundamental band gap seen with Al co-doping. We observed peaks in the near IR and visible regions of the co-doped monolayer, which improve the optoelectronic device's photovoltaic performance. Additionally, the correlation between optical characteristics and spin-spin couplings has been studied. We found that the Ni(II)'sd-dtransition bands or fundamental band gap in the near configuration undergoes a significant shift in response to AFM and FM coupling, whereas in the far configuration, they have a negligible shift due to the paramagnetic behavior of the Ni ions. These findings suggest that the magnetic coupling in DMS may be utilized for controlling the optical characteristics.

5.
Nano Lett ; 23(17): 8140-8145, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37610296

RESUMO

Transistors realized on the 2D antiferromagnetic semiconductor CrPS4 exhibit large magnetoconductance due to magnetic-field-induced changes in the magnetic state. The microscopic mechanism coupling the conductance and magnetic state is not understood. We identify it by analyzing the evolution of the parameters determining the transistor behavior─carrier mobility and threshold voltage─with temperature and magnetic field. For temperatures T near the Néel temperature TN, the magnetoconductance originates from a mobility increase due to the applied magnetic field that reduces spin fluctuation induced disorder. For T ≪ TN, instead, what changes is the threshold voltage, so that increasing the field at fixed gate voltage increases the density of accumulated electrons. The phenomenon is explained by a conduction band-edge shift correctly predicted by the ab initio calculations. Our results demonstrate that the band structure of CrPS4 depends on its magnetic state and reveal a mechanism for magnetoconductance that had not been identified earlier.

6.
Angew Chem Int Ed Engl ; : e202410019, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058519

RESUMO

Magnetic semiconductors, with integrated properties of ferromagnets and semiconductors, are significant for developing next-generation spintronic devices. Herein two atomically precise clusters of dysprosium(III) tellurides, formulated respectively as [Na2(15-crown-5)3(py)][(η5-Cp*Dy)5(Te)6](py)4 (Dy5Te6, Cp* = pentamethylcyclopentadienyl; py = pyridine) and [K(2,2,2-cryptand)]2[(η5-Cp*Dy)6(Te3)(Te2)2(Te)3] (Dy6Te10), are reported. Crystallographic studies revealed the presence of multifarious tellurido ligands within the polyhedral cluster cores. Spectroscopic and magnetic studies showed that both clusters are single-molecule magnets exhibiting slow magnetic relaxation behaviors at low temperatures and semiconductors with optical bandgaps comparable to benchmark semiconductors. These clusters represent probably the first lanthanide-based molecular magnetic semiconductors.

7.
Nano Lett ; 22(9): 3557-3561, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471102

RESUMO

Hybrid samples combining superconductors with magnetic topological insulators are a promising platform for exploring exotic new transport physics. We examine a Josephson junction of such a system based on the dilute magnetic topological insulator (Hg,Mn)Te and the type II superconductor MoRe. In the zero and very low field limits, to the best of our knowledge, the device shows, for the first time, an induced supercurrent through a magnetically doped semiconductor, in this case, a topological insulator. At higher fields, a rich and hysteretic magnetoresistance is revealed. Careful analysis shows that the explanation of this behavior can be found in magnetic flux focusing stemming from the Meissner effect in the superconductor, without invoking any role of proximity-induced superconductivity. The phenomena is important because it will ubiquitously coexist with any exotic new physics that may be present in this class of devices.

8.
Nano Lett ; 21(8): 3511-3517, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856213

RESUMO

The advent of two-dimensional (2D) magnets offers unprecedented control over electrons and spins. A key factor in determining exchange coupling and magnetic order is symmetry. Here, we apply second harmonic generation (SHG) to probe a 2D magnetic semiconductor CrSBr. We find that monolayers are ferromagnetically ordered below 146 K, an observation enabled by the discovery of a large magnetic dipole SHG effect in the centrosymmetric structure. In multilayers, the ferromagnetic monolayers are coupled antiferromagnetically, and in contrast to other 2D magnets, the Néel temperature of CrSBr increases with decreasing layer number. We identify magnetic dipole and magnetic toroidal moments as order parameters of the ferromagnetic monolayer and antiferromagnetic bilayer, respectively. These findings establish CrSBr as an exciting 2D magnetic semiconductor and extend the SHG probe of magnetic symmetry to the monolayer limit, opening the door to exploring the applications of magnetic-electronic coupling and the magnetic toroidal moment.

9.
Nano Lett ; 21(16): 7050-7055, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34355913

RESUMO

Uncovering the physics behind the electrical manipulation of low-dimensional magnetic materials remains a fundamental issue in practical application of nanoscale spintronics. Here, we propose a strategy to transform A-type antiferromagnetic (AFM) semiconductors into asymmetric AFM unipolar or bipolar magnetic semiconductors by applying perpendicular electric fields in van der Waals bilayer systems. Electric fields lifting energy levels of electrons within same spin channel from consistent layers in opposite direction enables unipolar magnetic semiconductor, whereas electrons within opposite spin channel enable bipolar magnetic semiconductor. A comprehensive study demonstrates this discrepancy originates from spatial distributions of spin density of valence band and conduction band edges in two layers of systems. The electric field induced unipolar or bipolar magnetic semiconducting behavior represents great potential of nanoscale AFM spintronics for information storage and processing.

10.
Small ; 16(12): e1903173, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31441228

RESUMO

Introducing ferromagnetism in transition metal dichalcogenides has attracted lots of attention due to the possible applications in spintronics devices. Generally, single magnetic element doping is used to introduce magnetism. However, mostly, weak ferromagnetism is observed. In this work, codoping of two kinds of transition metals (Nb and Co) into WSe2 is used to study its magnetic properties. In detail, single crystal WSe2 is codoped with 4 at% Co and various concentrations of Nb by employing the physical ion implantation method. Raman, X-ray diffraction and X-ray photoelectron spectroscopy results reveal the effective substitutional doping of implanted elements (Co and Nb). Magnetic measurements illustrate that both un-doped and 4 at% Co doped WSe2 show weak ferromagnetism whereas magnetization is strongly enhanced when Co and Nb are codoped into WSe2 . The magnetization is comparable with a ferromagnet, which may be attributed to Co, Nb doping and defects. In addition, a large coercivity of ≈1.2 kOe is observed in the 1 at% Nb-4 at% Co codoped WSe2 sample, which may be ascribed to the combined effect of doping-induced stress, defect-dictated pinning and anisotropy of NbSe bond owing to the charge transfer between Nb and Se ions.

11.
Nanotechnology ; 32(9)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232946

RESUMO

Doping of two-dimensional (2D) semiconductors has been intensively studied toward modulating their electrical, optical, and magnetic properties. While ferromagnetic 2D semiconductors hold promise for future spintronics and valleytronics, the origin of ferromagnetism in 2D materials remains unclear. Here, we show that substitutional Fe-doping of MoS2and WS2monolayers induce different magnetic properties. The Fe-doped monolayers are directly synthesized via chemical vapor deposition. In both cases, Fe substitutional doping is successfully achieved, as confirmed using scanning transmission electron microscopy. While both Fe:MoS2and Fe:WS2show PL quenching and n-type doping, Fe dopants in WS2monolayers are found to assume deep-level trap states, in contrast to the case of Fe:MoS2, where the states are found to be shallow. Usingµm- and mm-precision local NV-magnetometry and superconducting quantum interference device, we discover that, unlike MoS2monolayers, WS2monolayers do not show a magnetic phase transition to ferromagnetism upon Fe-doping. The absence of ferromagnetism in Fe:WS2is corroborated using density functional theory calculations.

12.
Nano Lett ; 19(6): 4043-4051, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31074998

RESUMO

Many two-dimensional (2D) semiconductors represented by transition metal dichalcogenides have tunable optical bandgaps in the visible or near IR-range standing as a promising candidate for optoelectronic devices. Despite this potential, however, their photoreactions are not well understood or controversial in the mechanistic details. In this work, we report a unique thickness-dependent photoreaction sensitivity and a switchover between two competing reaction mechanisms in atomically thin chromium thiophosphate (CrPS4), a two-dimensional antiferromagnetic semiconductor. CrPS4 showed a threshold power density 2 orders of magnitude smaller than that for MoS2 obeying a photothermal reaction route. In addition, reaction cross section quantified with Raman spectroscopy revealed distinctive power dependences in the low and high power regimes. On the basis of optical in situ thermometric measurements and control experiments against O2, water, and photon energy, we proposed a photochemical oxidation mechanism involving singlet O2 in the low power regime with a photothermal route for the other. We also demonstrated a highly effective encapsulation with Al2O3 as a protection against the destructive photoinduced and ambient oxidations.

13.
Nano Lett ; 18(1): 158-166, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29227660

RESUMO

Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

14.
Nano Lett ; 18(11): 7350-7357, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265545

RESUMO

Magic-sized clusters represent materials with unique properties at the border between molecules and solids and provide important insights into the nanocrystal formation process. However, synthesis, doping, and especially structural characterization become more and more challenging with decreasing cluster size. Herein, we report the successful introduction of Co2+ ions into extremely small-sized CdSe clusters with the intention of using internal ligand field transitions to obtain structural insights. Despite the huge mismatch between the radii of Cd2+ and Co2+ ions (>21%), CdSe clusters can be effectively synthesized with a high Co2+ doping concentration of ∼10%. Optical spectroscopy and mass spectrometry suggest that one or two Co2+ ions are substitutionally embedded into (CdSe)13 clusters, which is known as one of the smallest CdSe clusters. Using magnetic circular dichroism spectroscopy on the intrinsic ligand field transitions between the different 3d orbitals of the transition metal dopants, we demonstrate that the Co2+ dopants are embedded on pseudotetrahedral selenium coordinated sites despite the limited number of atoms in the clusters. A significant shortening of Co-Se bond lengths compared to bulk or nanocrystals is observed, which results in the metastability of Co2+ doping. Our results not only extend the doping chemistry of magic-sized semiconductor nanoclusters, but also suggest an effective method to characterize the local structure of these extremely small-sized clusters.

15.
Nano Lett ; 18(3): 2047-2053, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29464958

RESUMO

In two-dimensional (2D) colloidal semiconductor nanoplatelets, which are atomically flat nanocrystals, the precise control of thickness and composition on the atomic scale allows for the synthesis of heterostructures with well-defined electron and hole wave function distributions. Introducing transition metal dopants with a monolayer precision enables tailored magnetic exchange interactions between dopants and band states. Here, we use the absorption based technique of magnetic circular dichroism (MCD) to directly prove the exchange coupling of magnetic dopants with the band charge carriers in hetero-nanoplatelets with CdSe core and manganese-doped CdS shell (CdSe/Mn:CdS). We show that the strength of both the electron as well as the hole exchange interactions with the dopants can be tuned by varying the nanoplatelets architecture with monolayer accuracy. As MCD is highly sensitive for excitonic resonances, excited level spectroscopy allows us to resolve and identify, in combination with wave function calculations, several excited state transitions including spin-orbit split-off excitonic contributions. Thus, our study not only demonstrates the possibility to expand the extraordinary physical properties of colloidal nanoplatelets toward magneto-optical functionality by transition metal doping but also provides an insight into the excited state electronic structure in this novel two-dimensional material.

16.
Nano Lett ; 17(5): 3068-3075, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28388078

RESUMO

In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field Bex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd1-xMnxSe nanocrystals. Despite small Mn2+ concentrations (x = 0.4-1.6%), large polaron binding energies up to ∼26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn2+ spins by Bex. Temperature and magnetic field-dependent studies reveal that Bex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn2+ spins. These resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.

17.
Small ; 13(45)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28961360

RESUMO

Thermoelectrics (TE), the direct solid-state conversion of waste heat to electricity, is a promising field with potential wide-scale application for power generation. Intrinsic conflicts in the requirements for high electrical conductivity but (a) low thermal conductivity and (b) a large Seebeck coefficient have made enhancing TE performance difficult. Several recent striking advances in the field are reviewed. In regard to the former conflict, notable bottom-up nanostructuring methods for phonon-selective scattering are discovered, namely using nanosheets, dislocations, and most strikingly a process to fabricate nano-micropores leading to a 100% enhancement in the figure of merit (ZT ≈ 1.6) for rare-earth-free skutterudites. Porous materials are hitherto considered as having poor TE performance, so this is a new paradigm. In regard to the latter conflict, nanocomposite materials with hybrid effects and use of magnetism are emerging as novel bottom-up methods to enhance TE. Material informatics efforts to identify high-ZT materials are also reviewed.

18.
Sci Technol Adv Mater ; 15(3): 035008, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877684

RESUMO

We have employed first-principles calculations based on density functional theory (DFT) to investigate the underlying physics of unusual magnetism in Mn-doped MgO surface. We have studied two distinct scenarios. In the first one, two Mn atoms are substitutionally added to the surface, occupying the Mg sites. Both are stabilized in the Mn[Formula: see text] valence state carrying a local moment of 4.3 [Formula: see text] having a high-spin configuration. The magnetic interaction between the local moments display a very short-ranged characteristic, decaying very quickly with distance, and having antiferromagnetic ordering lower in energy. The energetics analysis also indicates that the Mn ions prefer to stay close to each other with an oxygen atom bridging the local interaction. In the second scenario, we started exploring the effect of native defects on the magnetism by crafting both Mg and O vacancies, which are p- and n-type defects, respectively. It is found that the electrons and holes affect the magnetic interaction between Mn ions in a totally different manner. The n-type defect leads to very similar magnetism, with the AFM configuration being energetically preferred. However, in the presence of Mg vacancy, the situation is quite different. The Mn atoms are further oxidized, giving rise to mixed Mn(d) ionic states. As a consequence, the Mn atoms couple ferromagnetically, when placed in the close configuration, and the obtained electronic structure is coherent with the double-exchange type of magnetic interaction. To guarantee the robustness of our results, we have benchmarked our calculations with three distinct theory levels, namely DFT-GGA, DFT-GGA+U and DFT-hybrid functionals. On the surface, the Mg vacancy displays lower formation energy occurring at higher concentrations. Therefore, our model systems can be the basis to explain a number of controversial results regarding transition metal doped oxides.

19.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334534

RESUMO

Diluted magnetic semiconductors (DMSs) with tunable ferromagnetism are among the most promising materials for fabricating spintronic devices. Some DMS systems have sizeable magnetoresistances that can further extend their applications. Here, we report a new DMS Rb(Zn1-x-yLiyMnx)4As3 with a quasi-two-dimensional structure showing sizeable anisotropies in its ferromagnetism and transverse magnetoresistance (MR). With proper charge and spin doping, single crystals of the DMS display Curie temperatures up to 24 K. Analysis of the critical behavior via Arrott plots confirms the long-range ferromagnetic ordering in the Rb(Zn1-x-yLiyMnx)4As3 single crystals. We observed remarkable intrinsic MR effects in the single crystals (i.e., a positive MR of 85% at 0.4 T and a colossal negative MR of -93% at 7 T).

20.
ACS Nano ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39267593

RESUMO

Two-dimensional (2D) magnetic semiconductors offer an intriguing platform for investigating magneto-optoelectronic properties and hold immense potential in developing prospective devices when they are combined with valley electronic materials like 2D transition-metal dichalcogenides. Herein, we report various magneto-optoelectronic response features of the vertical hBN-FLG-CrI3-WSe2-FLG-hBN van der Waals heterostructure. Through a sensible layout and exquisite manipulation, an hBN-FLG-CrI3-FLG-hBN heterostructure was also fabricated on identical CrI3 and FLGs for better comparison. Our results show that the WSe2-CrI3 heterostructure, acting as a p-n heterojunction, has advantageous capability in light detection, especially in self-powered light helicity detecting. In the WSe2-CrI3 heterojunction, the absolute value of photocurrent IPH exhibits obvious asymmetry with respect to the bias V, with the IPH of reversely biased WSe2-CrI3 p-n heterojunction being larger. When the CrI3 is fully spin-polarized under a 3 T magnetic field, the reversely biased WSe2-CrI3 heterojunction exhibits advantageous capability in light helicity detecting. Both the short-circuit currents ISC and IPH show one-cycle fluctuation behaviors when the quarter-wave plate rotates 180°, and the corresponding photoresponsivity helicities can be as high as 18.0% and 20.1%, respectively. We attribute the spin-enhanced photovoltaic effect in the WSe2-CrI3 heterojunction and its contribution to circularly polarized light detection to the coordination function of the spin-filter CrI3, the valley electronic monolayer WSe2, and the spin-dependent charge transfer between them. Our work helps us understand the interplay between the magnetic and optoelectronic properties of WSe2-CrI3 heterojunctions and promotes the developing progress of prospective 2D spin optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA