Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Biol Sci ; 289(1984): 20221462, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36476008

RESUMO

Stressful environmental conditions can shape both an individual's phenotype and that of its offspring. However, little is known about transgenerational effects of chronic (as opposed to acute) stressors, nor whether these vary across the breeding lifespan of the parent. We exposed adult female (F0 generation) three-spined sticklebacks (Gasterosteus aculeatus) to chronic environmental stressors and compared their reproductive allocation with that of non-exposed controls across early, middle and late clutches produced within the single breeding season of this annual population. There was a seasonal trend (but no treatment difference) in F0 reproductive allocation, with increases in egg mass and fry size in late clutches. We then tested for transgenerational effects in the non-exposed F1 and F2 generations. Exposure of F0 females to stressors resulted in phenotypic change in their offspring and grandoffspring that were produced late in their breeding lifespan: F1 offspring produced from the late-season clutches of stressor-exposed F0 females had higher early life survival, and subsequently produced heavier eggs and F2 fry that were larger at hatching. Changed maternal allocation due to a combination of seasonal factors and environmental stressors can thus have a transgenerational effect by influencing the reproductive allocation of daughters, especially those born late in life.


Assuntos
Smegmamorpha , Estresse Fisiológico , Animais , Feminino , Masculino
2.
Proc Biol Sci ; 289(1969): 20211884, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35168397

RESUMO

Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Parental allocation varies across age and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This nonlinear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life-history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake and environmentally driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation when energetic costs and energy intake increase with age and also when energy intake decreases and energetic costs increase or decrease. Feeding success and environmentally driven mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of nonlinear maternal allocation across diverse taxonomic groups.


Assuntos
Mamíferos , Reprodução , Animais , Reprodução/fisiologia
3.
Bioessays ; 42(11): e2000049, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33030256

RESUMO

While across the animal kingdom offspring are born smaller than their parents, notable exceptions exist. Several dipteran species belonging to the Hippoboscoidea superfamily can produce offspring larger than themselves. In this essay, the blood-feeding tsetse is focused on. It is suggested that the extreme reproductive strategy of this fly is enabled by feeding solely on highly nutritious blood, and producing larval offspring that are soft and malleable. This immense reproductive expenditure may have evolved to avoid competition with other biting flies. Tsetse also transmit blood-borne parasites that cause the fatal diseases called African trypanosomiases. It is discussed how tsetse life history and reproductive strategy profoundly influence the type of vector control interventions used to reduce fly populations. In closing, it is argued that the unusual life history of tsetse warrants their preservation in the areas where human and animal health is not threatened.


Assuntos
Moscas Tsé-Tsé , Animais , Feminino , Humanos , Larva , Mães , Reprodução
4.
Ecol Lett ; 24(10): 2113-2122, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34265869

RESUMO

Many organisms show signs of deterioration with age in terms of survival and reproduction. We tested whether intraspecific variation in such senescence patterns can be driven by resource availability or reproductive history. We did this by manipulating nutritional stress and age at first reproduction and measuring age-dependent reproductive output in tsetse (Glossina morsitans morsitans), a viviparous fly with high maternal allocation. Across all treatments, offspring weight followed a bell-shaped curve with maternal age. Nutritionally stressed females had a higher probability of abortion and produced offspring with lower starvation tolerance. There was no evidence of an increased rate of reproductive senescence in nutritionally stressed females, or a reduced rate due to delayed mating, as measured by patterns of abortion, offspring weight or offspring starvation tolerance. Therefore, although we found evidence of reproductive senescence in tsetse, our results did not indicate that resource allocation trade-offs or costs of reproduction increase the rate of senescence.


Assuntos
Envelhecimento , Reprodução , Feminino , Humanos , Idade Materna , Gravidez
5.
J Exp Biol ; 224(Pt 1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33234683

RESUMO

Early-life conditions are crucial determinants of phenotype and fitness. The effects of pre- and post-natal conditions on fitness prospects have been widely studied but their interactive effects have received less attention. In birds, asynchronous hatching creates challenging developmental conditions for the last-hatched chicks, but differential allocation in last-laid eggs might help to compensate this initial handicap. The relative importance and potential interaction between pre- and post-hatching developmental conditions for different fitness components remains mostly unknown. We manipulated hatching order in wild pied flycatchers (Ficedula hypoleuca), creating three groups: natural asynchrony (last-laid eggs hatching last), reversed asynchrony (last-laid eggs hatching first) and hatching synchrony (all eggs hatching at once). We examined the effects of these manipulations on early-life survival, growth and telomere length, a potential cellular biomarker of fitness prospects. Mortality was mostly affected by hatching order, with last-hatched chicks being more likely to die. Early-life telomere dynamics and growth were influenced by the interplays between laying and hatching order. Last-laid but first-hatched chicks were heavier but had shorter telomeres 5 days after hatching than their siblings, indicating rapid early growth with potential adverse consequences on telomere length. Synchronous chicks did not suffer any apparent cost of hatching synchronously. Impaired phenotypes only occurred when reversing the natural hatching order (i.e. developmental mismatch), suggesting that maternal investment in last-laid eggs might indeed counterbalance the initial handicap of last-hatched chicks. Our experimental study thus highlights that potential interplays between pre- and post-natal environments are likely to shape fitness prospects in the wild.


Assuntos
Aves Canoras , Telômero , Animais , Ovos , Fenótipo , Telômero/genética
6.
J Anim Ecol ; 90(5): 1122-1133, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33550597

RESUMO

Females may adjust prenatal allocation in relation to ecological conditions that affect reproductive success, such as weather conditions or predation risk. In cooperative breeders, helpers might also influence reproductive success, and previous studies suggest that females can lay smaller eggs or larger clutches when breeding with more helpers. Although recent work suggests that helper effects can vary according to climatic variables, how social and ecological factors interact to shape prenatal allocation is poorly understood. Here, we examine how ecological and social components of the breeding environment covary with egg mass and clutch size, using as a model the sociable weaver Philetairus socius, a colonial, cooperatively breeding passerine. The study spanned 9 years and included over 1,900 eggs from over 550 clutches. Our analyses combined natural variation in weather conditions (rainfall before each reproductive event) with a nest predator-exclusion experiment and continuous monitoring of the mother's social environment, allowing us to estimate how individual females adjust allocation to reproduction as their number of helpers varies. We found that egg mass varied consistently within females and did not clearly differ in relation to rainfall or predation risk. Contrary to previous studies, there was no evidence for plastic adjustments as females gained and lost helpers, and egg mass was instead better predicted by mother size and identity. Females laid larger clutches when breeding in environments where predation risk was experimentally reduced and after higher rainfall levels. Yet, there was no evidence for increasing clutch size as the number of helpers increased, nor for an interaction between helper effects and ecological factors. We conclude that while sociable weaver females can vary their clutch size, they show high individual consistency in egg mass. In addition, we found no evidence that females may maximize fitness through plastic prenatal allocation in relation to the number of helpers, or that the presence/absence of helper effects is modulated by rainfall levels or predation risk. These results challenge our current knowledge on some of the possible benefits of breeding with helpers and call for more long-term analyses on reproductive allocation adjustments in other cooperative systems.


Assuntos
Comportamento Predatório , Pardais , Animais , Tamanho da Ninhada , Feminino , Reprodução , Fatores Sociais , Tempo (Meteorologia)
7.
J Anim Ecol ; 90(2): 471-482, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33155282

RESUMO

In an environment with limited resources, parents may trade-off the number of offspring produced against offspring mass. To maximize fitness under unpredictable environments, females must not only maximize mean annual reproductive success but also minimize between-year variation in reproductive success. Thus, preferred strategies of maternal allocation might be to maximize the mass of their offspring or to produce a number of offspring of variable body masses. Many social species have evolved in variable and unpredictable environments where only the social environment can be predicted. If mothers seem to alter their total reproductive allocation to offspring depending on their social environment, how the total expenditure is allocated between the different offspring is still unknown. Here, we analysed how climatic and social environments influence strategies of maternal allocation and how these strategies impact pup first-year survival in a wild population of Alpine marmots monitored between 1990 and 2016. We found that females acted as income breeders using resources immediately available for reproduction. Our results showed that the proportion of maternal mass allocated to offspring varied mainly with litter size. However, how maternal allocation is shared between pups depended on climatic and social environments. In general, mothers tended to have litters of greater average mass and small variability in favourable social environments or when resources are abundant and lighter average pup mass but high variability in unfavourable social environments or when resources are scarce. This variable allocation could correspond to dynamic bet-hedging such that mothers influence the variance of pup mass within the litter in response to poor current environmental conditions. Our analysis of first-year survival showed that females should maximize the body mass of their young whatever the conditions will be because pups of higher mass have higher survival, regardless of environmental conditions. When resources are scarce, this strategy might not be achievable for all pups so that mothers produced variable pups. In large litters, this strategy increased first-year survival. Because pup variability affects parental fitness, differential allocation between pups of the same litter could have large consequences on fitness and thus on reproductive strategies of social species.


Assuntos
Marmota , Reprodução , Animais , Feminino , Humanos , Tamanho da Ninhada de Vivíparos , Mães , Gravidez , Meio Social
8.
J Anim Ecol ; 89(8): 1927-1940, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32356304

RESUMO

Life history theory predicts allocation of energy to reproduction varies with maternal age, but additional maternal features may be important to the allocation of energy to reproduction. We aimed to characterize age-specific variation in maternal allocation and assess the relationship between maternal allocation and other static and dynamic maternal features. Mass measurements of 531 mothers and pups were used with Bayesian hierarchical models to explain the relationship between diverse maternal attributes and both the proportion of mass allocated by Weddell seal mothers, and the efficiency of mass transfer from mother to pup during lactation as well as the weaning mass of pups. Our results demonstrated that maternal mass was strongly and positively associated with the relative reserves allocated by a mother and a pup's weaning mass but that the efficiency of mass transfer declines with maternal parturition mass. Birthdate was positively associated with proportion mass allocation and pup weaning mass, but mass transfer efficiency was predicted to be highest at the mean birthdate. The relative allocation of maternal reserves declined with maternal age but the efficiency of mass transfer to pups increases, suggestive of selective disappearance of poor-quality mothers. These findings highlight the importance of considering multiple maternal features when assessing variation in maternal allocation.


Assuntos
Lactação , Focas Verdadeiras , Animais , Teorema de Bayes , Feminino , Reprodução , Desmame
9.
J Exp Biol ; 222(Pt 19)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548290

RESUMO

Mothers may vary resource allocation to eggs and embryos, which may affect offspring fitness and prepare them for future environmental conditions. The effects of food availability and predation risk on reproduction have been extensively studied, yet their simultaneous impacts on reproductive investment and offspring early life conditions are still unclear. We experimentally manipulated these key environmental elements using a 2×2 full factorial design in wild, free-living pied flycatchers (Ficedula hypoleuca), and measured egg composition, eggshell traits and offspring condition. Eggs laid in food-supplemented nests had larger yolks and thicker shells independently of predation risk, while eggs laid in nests exposed to predator cues had lower levels of immunoglobulins, independent of food supplementation. In nests without predator cues, shell biliverdin content was higher in eggs laid in food-supplemented nests. Incubation was 1 day shorter in food-supplemented nests and shorter incubation periods were associated with higher hatching success, but there were no direct effects of maternal treatment on hatching success. To investigate the impact of maternal treatment (via egg composition) on the offspring, we performed full brood cross-fostering after hatching to unmanipulated nests. Maternal treatment did not significantly affect body mass and immunoglobulin levels of offspring. Our results suggest that although prenatal maternal cues affected egg composition, these egg-mediated effects may not have detectable consequences for offspring growth or immune capacity. Unpredictable environmental stressors may thus affect parental investment in the eggs, but parental care may level off costs and benefits of differential maternal egg allocation.


Assuntos
Casca de Ovo/fisiologia , Alimentos , Óvulo/fisiologia , Passeriformes/fisiologia , Comportamento Predatório/fisiologia , Risco , Animais , Comportamento Animal , Cruzamento , Feminino , Imunoglobulinas/metabolismo , Modelos Lineares
10.
J Evol Biol ; 31(2): 267-276, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194826

RESUMO

Females are predicted to alter sex allocation when ecological, physiological and behavioural variables have different consequences on the fitness of male and female offspring. Traditionally, tests of sex allocation have examined single causative factors, often ignoring possible interactions between multiple factors. Here, we used a multifactorial approach to examine sex allocation in the viviparous skink, Niveoscincus ocellatus. We integrated a 16-year observational field study with a manipulative laboratory experiment to explore whether the effects of the maternal thermal environment interact with the resources available to females for reproduction to affect sex allocation decisions. We found strong effects of temperature on sex allocation in the field, with females born in warm conditions and males in cold conditions; however, this was not replicated in the laboratory. In contrast, we found no effect of female resource availability on sex allocation, either independently, or in interaction with temperature. These results corresponded with an overall lack of an effect of resource availability on any of the life history traits that we predicted would mediate the benefits of differential sex allocation in this system, suggesting that selection for sex allocation in response to resource availability may be relatively weak. Combined, these results suggest that temperature may be the predominant factor driving sex allocation in this system.


Assuntos
Lagartos/fisiologia , Reprodução , Processos de Determinação Sexual , Razão de Masculinidade , Animais , Feminino , Alimentos , Luz , Masculino , Temperatura , Viviparidade não Mamífera
11.
J Exp Biol ; 221(Pt 7)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29440358

RESUMO

In many animal species, performance in the early life stages strongly affects recruitment to the adult population; however, factors that influence early life history stages are often the least understood. This is particularly relevant for lake sturgeon, Acipenser fulvescens, living in areas where environmental calcium concentrations are declining, partly due to anthropogenic activity. As calcium is important for muscle contraction and fatigue resistance, declining calcium levels could constrain swimming performance. Similarly, swimming performance could be influenced by variation in yolk sac volume, because the yolk sac is likely to affect drag forces during swimming. Testing swimming performance of larval A. fulvescens reared in four different calcium treatments spanning the range of 4-132 mg l-1 [Ca2+], this study found no treatment effects on the sprint swimming speed. A novel test of volitional swimming performance, however, revealed reduced swimming performance in the low calcium environment. Specifically, volitionally swimming larvae covered a shorter distance before swimming cessation in the low calcium environment compared with the other treatments. Moreover, sprint swimming speed in larvae with a large yolk sac was significantly slower than in larvae with a small yolk sac, regardless of body length variation. Thus, elevated maternal allocation (i.e. more yolk) was associated with reduced swimming performance. Data suggest that larvae in low calcium environments or with a large yolk sac exhibit reduced swimming performance and could be more susceptible to predation or premature downstream drift. Our study reveals how environmental factors and phenotypic variation influence locomotor performance in a larval fish.


Assuntos
Cálcio/análise , Peixes/fisiologia , Natação , Saco Vitelino/anatomia & histologia , Animais , Peixes/crescimento & desenvolvimento , Água Doce/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-29410189

RESUMO

The maternal allocation of carotenoids to eggs has been widely documented and manipulated. However, it is often assumed that the sole adaptive value of this allocation is to increase offspring fitness. Because carotenoids can be pro-oxidants or antioxidants depending on their concentrations and their chemical environment (i.e. presence of other antioxidants), dams may need to dispose of excess carotenoids upon depletion of other antioxidants to prevent oxidative damage. Additionally, the amount of carotenoids deposited in eggs may be dependent on male traits such as quality and coloration. We evaluated these two non-mutually exclusive hypotheses for carotenoid allocation to eggs and assessed paternal effects by supplementing male and female brown anole lizards, Anolis sagrei, with dietary carotenoids or with a combination of carotenoids and vitamin C. We found significant differences in the antioxidant capacities of fertilized and unfertilized eggs produced by female lizards, but the treatment did not affect the antioxidant capacity or carotenoid content of eggs. However, the carotenoid concentration of unfertilized eggs from carotenoid-supplemented females was significantly higher than eggs from the control group. Male coloration and body size did not affect the antioxidant capacity or carotenoid content of the eggs. Carotenoids may be allocated to unfertilized eggs to offset oxidative damage to the dam, with a neutral effect on offspring, rather than to solely provide antioxidant benefits to offspring as has been widely assumed.


Assuntos
Carotenoides/metabolismo , Lagartos/fisiologia , Comportamento Materno , Óvulo/metabolismo , Animais , Tamanho Corporal , Cor , Feminino , Masculino , Estresse Oxidativo , Zigoto/metabolismo
13.
Gen Comp Endocrinol ; 224: 283-93, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26393309

RESUMO

Maternal effects are a crucial mechanism in many taxa in generating phenotypic variation, affecting offspring development and fitness and thereby potentially adapting them to their expected environments. Androgen hormones in bird eggs have attracted considerable interest in past years, and it is frequently assumed that their concentrations in eggs are shaped by Darwinian selection. Currently, however, the data is scattered over species with very different life-history strategies, environments and selection pressures, making it difficult to draw any firm conclusions as to their functional significance for a given system. I review the evidence available as to the function, variation and potential adaptive value of yolk androgens (testosterone, T and androstenedione, A4) using one well-studied wild bird model system, the European flycatchers Ficedula hypoleuca and Ficedula albicollis. These species both show genetic and environmental variation in yolk androgen levels, along with fitness correlations for the female, suggesting the potential for selection. However, variation in yolk T and A4 seem to be differentially affected, suggesting that maternal constraints/costs shape the transfer of the yolk steroids differently. Most of the environmental variation is consistent with the idea of high yolk androgen levels under poor rearing conditions, although the effect sizes in relation to environmental variation are rather small in relation to genetic among-female variation. Importantly, within-clutch patterns too vary in relation to environmental conditions. Yolk androgens seem to have multiple short- and long-term effects on phenotype and behavior; importantly, they are also correlated with the fitness of offspring and mothers. However, the effects are often sex-dependent, and not universally beneficial for the offspring. Unfortunately, conclusive data as to the adaptive benefits of clutch mean androgen levels or within clutch-patterns in different environmental conditions is still lacking.


Assuntos
Hormônios/farmacologia , Exposição Materna , Modelos Biológicos , Aves Canoras/fisiologia , Animais , Feminino
14.
Behav Ecol ; 35(2): arae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486920

RESUMO

Predation risk can influence behavior, reproductive investment, and, ultimately, individuals' fitness. In high-risk environments, females often reduce allocation to reproduction, which can affect offspring phenotype and breeding success. In cooperative breeders, helpers contribute to feed the offspring, and groups often live and forage together. Helpers can, therefore, improve reproductive success, but also influence breeders' condition, stress levels and predation risk. Yet, whether helper presence can buffer the effects of predation risk on maternal reproductive allocation remains unstudied. Here, we used the cooperatively breeding sociable weaver Philetairus socius to test the interactive effects of predation risk and breeding group size on maternal allocation to clutch size, egg mass, yolk mass, and yolk corticosterone. We increased perceived predation risk before egg laying using playbacks of the adults' main predator, gabar goshawk (Micronisus gabar). We also tested the interactive effects of group size and prenatal predator playbacks on offspring hatching and fledging probability. Predator-exposed females laid eggs with 4% lighter yolks, but predator-calls' exposure did not clearly affect clutch size, egg mass, or egg corticosterone levels. Playback-treatment effects on yolk mass were independent of group size, suggesting that helpers' presence did not mitigate predation risk effects on maternal allocation. Although predator-induced reductions in yolk mass may decrease nutrient availability to offspring, potentially affecting their survival, playback-treatment effects on hatching and fledging success were not evident. The interplay between helper presence and predator effects on maternal reproductive investment is still an overlooked area of life history and physiological evolutionary trade-offs that requires further studies.

15.
Biol Rev Camb Philos Soc ; 93(1): 1-27, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28393457

RESUMO

Early survival is highly variable and strongly influences observed population growth rates in most vertebrate populations. One of the major potential drivers of survival variation among juveniles is body mass. Heavy juveniles are better fed and have greater body reserves, and are thus assumed to survive better than light individuals. In spite of this, some studies have failed to detect an influence of body mass on offspring survival, questioning whether offspring body mass does indeed consistently influence juvenile survival, or whether this occurs in particular species/environments. Furthermore, the causes for variation in offspring mass are poorly understood, although maternal mass has often been reported to play a crucial role. To understand why offspring differ in body mass, and how this influences juvenile survival, we performed phylogenetically corrected meta-analyses of both the relationship between offspring body mass and offspring survival in birds and mammals and the relationship between maternal mass and offspring mass in mammals. We found strong support for an overall positive effect of offspring body mass on survival, with a more pronounced influence in mammals than in birds. An increase of one standard deviation of body mass increased the odds of offspring survival by 71% in mammals and by 44% in birds. A cost of being too fat in birds in terms of flight performance might explain why body mass is a less reliable predictor of offspring survival in birds. We then looked for moderators explaining the among-study differences reported in the intensity of this relationship. Surprisingly, sex did not influence the intensity of the offspring mass-survival relationship and phylogeny only accounted for a small proportion of observed variation in the intensity of that relationship. Among the potential factors that might affect the relationship between mass and survival in juveniles, only environmental conditions was influential in mammals. Offspring survival was most strongly influenced by body mass in captive populations and wild populations in the absence of predation. We also found support for the expected positive effect of maternal mass on offspring mass in mammals (rpearson = 0.387). As body mass is a strong predictor of early survival, we expected heavier mothers to allocate more to their offspring, leading them to be heavier and so to have a higher survival. However, none of the potential factors we tested for variation in the maternal mass-offspring mass relationship had a detectable influence. Further studies should focus on linking these two relationships to determine whether a strong effect of offspring size on early survival is associated with a high correlation coefficient between maternal mass and offspring mass.


Assuntos
Animais Recém-Nascidos , Aves/fisiologia , Peso ao Nascer , Mamíferos/fisiologia , Animais
16.
Oecologia ; 107(4): 463-468, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28307388

RESUMO

The timing of reproduction affected litter size, offspring mass, and offspring survival in the Uinta ground squirrel, Spermophilus armatus, in Grand Teton National Park, Wyoming. Survival of juvenile females to yearling age varied negatively with date of weaning and positively with individual offspring mass. At the same time, juveniles weaned early in the season were lighter, and juveniles weaned later in the season were heavier. The coefficient of variation for juvenile body mass, originally measured at weaning, significantly decreased by the time juveniles entered hibernation, indicating that individuals weaned early and light "caught up" in body mass to individuals weaned later and heavier. From the perspective of the mother's investment in the litter, litter size (corrected for mother's mass) decreased with later wcaning dates, while the relationship of weaning date to litter mass (corrected for mother's mass) was significant in only one year. Maternal allocation of resources in litters changed over the season so that mothers produced many, small offspring early in the season, and fewer, large offspring late in the season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA