Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750033

RESUMO

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Colesterol/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microglia/metabolismo
2.
Annu Rev Neurosci ; 46: 359-380, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37068787

RESUMO

Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.


Assuntos
Gânglios da Base , Volição , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Interneurônios , Reforço Psicológico
3.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38174902

RESUMO

To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Transcriptoma/genética , Organogênese , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
4.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240380

RESUMO

Skeletal muscle stem cells (MuSCs) are recognised as functionally heterogeneous. Cranial MuSCs are reported to have greater proliferative and regenerative capacity when compared with those in the limb. A comprehensive understanding of the mechanisms underlying this functional heterogeneity is lacking. Here, we have used clonal analysis, live imaging and single cell transcriptomic analysis to identify crucial features that distinguish extraocular muscle (EOM) from limb muscle stem cell populations. A MyogeninntdTom reporter showed that the increased proliferation capacity of EOM MuSCs correlates with deferred differentiation and lower expression of the myogenic commitment gene Myod. Unexpectedly, EOM MuSCs activated in vitro expressed a large array of extracellular matrix components typical of mesenchymal non-muscle cells. Computational analysis underscored a distinct co-regulatory module, which is absent in limb MuSCs, as driver of these features. The EOM transcription factor network, with Foxc1 as key player, appears to be hardwired to EOM identity as it persists during growth, disease and in vitro after several passages. Our findings shed light on how high-performing MuSCs regulate myogenic commitment by remodelling their local environment and adopting properties not generally associated with myogenic cells.


Assuntos
Músculo Esquelético , Músculos Oculomotores , Camundongos , Animais , Músculo Esquelético/metabolismo , Músculos Oculomotores/metabolismo , Camundongos Endogâmicos C57BL , Proliferação de Células , Células-Tronco
5.
Mol Cell Proteomics ; 23(3): 100722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272115

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Endoteliais/metabolismo , Espectrometria de Massas em Tandem , Matriz Extracelular/metabolismo , Glioma/metabolismo , Epigênese Genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
6.
Mol Cell Proteomics ; 23(1): 100706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141925

RESUMO

Impaired extracellular matrix (ECM) remodeling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, aging, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological aging are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodeling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) aging. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analyzed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an aging phenotype. These results extend our knowledge of the LV proteome remodeling induced by chronological and pathological aging in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodeling and the aging process of ECs, which may provide an additional layer to prevent cardiac aging.


Assuntos
Células Endoteliais , Proteoma , Humanos , Proteoma/metabolismo , Células Endoteliais/metabolismo , Coração , Envelhecimento/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
7.
Mol Cell Proteomics ; 22(4): 100528, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918099

RESUMO

The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely posttranslationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome," of tissues. This first part of this review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Lastly, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. Mass spectrometry-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.


Assuntos
Neoplasias , Proteômica , Humanos , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo
8.
Mol Cell Proteomics ; 22(8): 100607, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356494

RESUMO

Biological networks have been widely used in many different diseases to identify potential biomarkers and design drug targets. In the present review, we describe the main computational techniques for reconstructing and analyzing different types of protein networks and summarize the previous applications of such techniques in cardiovascular diseases. Existing tools are critically compared, discussing when each method is preferred such as the use of co-expression networks for functional annotation of protein clusters and the use of directed networks for inferring regulatory associations. Finally, we are presenting examples of reconstructing protein networks of different types (regulatory, co-expression, and protein-protein interaction networks). We demonstrate the necessity to reconstruct networks separately for each cardiovascular tissue type and disease entity and provide illustrative examples of the importance of taking into consideration relevant post-translational modifications. Finally, we demonstrate and discuss how the findings of protein networks could be interpreted using single-cell RNA-sequencing data.


Assuntos
Redes Reguladoras de Genes , Proteômica , Mapas de Interação de Proteínas , Proteínas , Biologia Computacional/métodos
9.
Proteomics ; : e2400052, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896836

RESUMO

The extracellular matrix (ECM) is composed of collagens, ECM glycoproteins, and proteoglycans (also named core matrisome proteins) that are critical for tissue structure and function, and matrisome-associated proteins that balance the production and degradation of the ECM proteins. The identification and quantification of core matrisome proteins using mass spectrometry is often hindered by their low abundance and their propensity to form macromolecular insoluble structures. In this study, we aimed to investigate the added value of decellularization in identifying and quantifying core matrisome proteins in mouse kidney. The decellularization strategy combined freeze-thaw cycles and sodium dodecyl sulphate treatment. We found that decellularization preserved 95% of the core matrisome proteins detected in non-decellularized kidney and revealed few additional ones. Decellularization also led to an average of 59 times enrichment of 96% of the core matrisome proteins as the result of the successful removal of cellular and matrisome-associated proteins. However, the enrichment varied greatly among core matrisome proteins, resulting in a misrepresentation of the native ECM composition in decellularized kidney. This should be brought to the attention of the matrisome research community, as it highlights the need for caution when interpreting proteomic data obtained from a decellularized organ.

10.
J Proteome Res ; 23(8): 2908-2918, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38315831

RESUMO

The extracellular matrix (ECM) is a complex assembly of proteins that provide interstitial scaffolding and elastic recoil for human lungs. The pulmonary extracellular matrix is increasingly recognized as an independent bioactive entity, by creating biochemical and mechanical signals that influence disease pathogenesis, making it an attractive therapeutic target. However, the pulmonary ECM proteome ("matrisome") remains challenging to analyze by mass spectrometry due to its inherent biophysical properties and relatively low abundance. Here, we introduce a strategy designed for rapid and efficient characterization of the human pulmonary ECM using the photocleavable surfactant Azo. We coupled this approach with trapped ion mobility MS with diaPASEF to maximize the depth of matrisome coverage. Using this strategy, we identify nearly 400 unique matrisome proteins with excellent reproducibility that are known to be important in lung biology, including key core matrisome proteins.


Assuntos
Matriz Extracelular , Pulmão , Proteômica , Humanos , Proteômica/métodos , Pulmão/metabolismo , Matriz Extracelular/metabolismo , Compostos Azo/química , Proteínas da Matriz Extracelular/metabolismo , Tensoativos/química , Proteoma/análise , Espectrometria de Massas/métodos
11.
Biochem Biophys Res Commun ; 692: 149364, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070276

RESUMO

The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.


Assuntos
Osteonectina , Ligamento Periodontal , Animais , Camundongos , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Camundongos Knockout , Osteonectina/genética , Osteonectina/metabolismo
12.
Mol Cell Proteomics ; 21(4): 100216, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202840

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor. The extracellular matrix, also known as the matrisome, helps determine glioma invasion, adhesion, and growth. Little attention, however, has been paid to glycosylation of the extracellular matrix components that constitute the majority of glycosylated protein mass and presumed biological properties. To acquire a comprehensive understanding of the biological functions of the matrisome and its components, including proteoglycans (PGs) and glycosaminoglycans (GAGs), in GBM tumorigenesis, and to identify potential biomarker candidates, we studied the alterations of GAGs, including heparan sulfate (HS) and chondroitin sulfate (CS), the core proteins of PGs, and other glycosylated matrisomal proteins in GBM subtypes versus control human brain tissue samples. We scrutinized the proteomics data to acquire in-depth site-specific glycoproteomic profiles of the GBM subtypes that will assist in identifying specific glycosylation changes in GBM. We observed an increase in CS 6-O sulfation and a decrease in HS 6-O sulfation, accompanied by an increase in unsulfated CS and HS disaccharides in GBM versus control samples. Several core matrisome proteins, including PGs (decorin, biglycan, agrin, prolargin, glypican-1, and chondroitin sulfate proteoglycan 4), tenascin, fibronectin, hyaluronan link protein 1 and 2, laminins, and collagens, were differentially regulated in GBM versus controls. Interestingly, a higher degree of collagen hydroxyprolination was also observed for GBM versus controls. Further, two PGs, chondroitin sulfate proteoglycan 4 and agrin, were significantly lower, about 6-fold for isocitrate dehydrogenase-mutant, compared to the WT GBM samples. Differential regulation of O-glycopeptides for PGs, including brevican, neurocan, and versican, was observed for GBM subtypes versus controls. Moreover, an increase in levels of glycosyltransferase and glycosidase enzymes was observed for GBM when compared to control samples. We also report distinct protein, peptide, and glycopeptide features for GBM subtypes comparisons. Taken together, our study informs understanding of the alterations to key matrisomal molecules that occur during GBM development. (Data are available via ProteomeXchange with identifier PXD028931, and the peaks project file is available at Zenodo with DOI 10.5281/zenodo.5911810).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Agrina/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato , Humanos
13.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791371

RESUMO

The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.


Assuntos
Senescência Celular , Matriz Extracelular , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Matriz Extracelular/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia
14.
J Proteome Res ; 22(3): 790-801, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36763087

RESUMO

The extracellular matrix (ECM) is a critical non-cellular component of multicellular organisms containing a variety of proteins, glycoproteins, and proteoglycans which have been implicated in a wide variety of essential biological processes, including development, wound healing, and aging. Due to low solubility, many ECM proteins have been underrepresented in previous proteomic datasets. Using an optimized three-step decellularization and ECM extraction method involving chaotrope extraction and digestion via hydroxylamine hydrochloride, we have generated coverage of the matrisome across 25 organs. We observe that the top 100 most abundant proteins from the ECM fractions of all tissues are generally present in all tissues, indicating that tissue matrices are principally composed of a shared set of ECM proteins. However, these proteins vary up to 4000-fold between tissues, resulting in highly unique matrix profiles even with the same primary set of proteins. A data reduction approach was used to reveal related networks of expressed ECM proteins across varying tissues, including basement membrane and collagen subtypes.


Assuntos
Proteínas da Matriz Extracelular , Proteômica , Animais , Camundongos , Proteínas da Matriz Extracelular/metabolismo , Proteômica/métodos , Matriz Extracelular/metabolismo , Proteoglicanas , Espectrometria de Massas
15.
Mol Cell Proteomics ; 20: 100079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845168

RESUMO

The extracellular matrix is a key component of tissues, yet it is underrepresented in proteomic datasets. Identification and evaluation of proteins in the extracellular matrix (ECM) has proved challenging due to the insolubility of many ECM proteins in traditional protein extraction buffers. Here we separate the decellularization and ECM extraction steps of several prominent methods for evaluation under real-world conditions. The results are used to optimize a two-fraction ECM extraction method. Approximately one dozen additional parameters are tested, and recommendations for analysis based on overall ECM coverage or specific ECM classes are given. Compared with a standard in-solution digest, the optimized method yielded a fourfold improvement in unique ECM peptide identifications.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Proteômica/métodos , Animais , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteoma
16.
Rheumatol Int ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823896

RESUMO

MIS-C is a rare, highly inflammatory state resembling incomplete Kawasaki disease, temporarily associated with COVID-19. The pathogenesis is not completely known. RNAseq was carried out on whole blood of six treatment-naïve MIS-C patients. This was compared against RNAseq transcriptomics data of five healthy controls (HC), four Kawasaki Disease (KD) and seven systemic Juvenile Idiopathic Arthritis (sJIA). Using PCA, MIS-C clustered separately from HC, KD and sJIA. Amongst the top 50 significant genes in the three comparisons with HC, KD, and sJIA, common genes were: TMCC2, ITGA2B, DMTN, GFI1B, PF4, QSER1, GRAP2, TUBB1. DSEA revealed that maximum number of hits for overexpressed pathways was for NABA matrisome activation when MIS-C was compared against HC. Cytokine stimulated cellular activation pathways, specifically IL-10 were downregulated. MIS-C had more activated pathways of neutrophil degranulation and acquired immune activation but less of coagulation system or heat-shock system involvement as compared to KD. As compared to sJIA, humoral immune response and complements were activated. Matrisome activation was higher, with increased cell-cell interaction and ECM signalling. This analysis revealed novel insights into the pathogenesis of MIS-C, including the potential role of matrisomes, humoral immune system and down-regulated interleukin-10 pathways.

17.
Adv Exp Med Biol ; 1413: 213-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195533

RESUMO

The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.


Assuntos
Proteínas da Matriz Extracelular , Pneumopatias , Humanos , Colágeno , Matriz Extracelular , Pulmão
18.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445951

RESUMO

The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free (GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration, hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice, these indices were significantly higher than in GF mice, and similar to that of control mice, indicating normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the regulation of hepatic remodeling during the regenerative process.


Assuntos
Hepatectomia , Regeneração Hepática , Animais , Camundongos , Regeneração Hepática/genética , Fígado/metabolismo , Expressão Gênica
19.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769148

RESUMO

Precise characterization of a tissue's extracellular matrix (ECM) protein composition (matrisome) is essential for biomedicine. However, ECM protein extraction that requires organ-specific optimization is still a major limiting factor in matrisome studies. In particular, the matrisome of mouse kidneys is still understudied, despite mouse models being crucial for renal research. Here, we comprehensively characterized the matrisome of kidneys in healthy C57BL/6 mice using two ECM extraction methods in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), protein identification, and label-free quantification (LFQ) using MaxQuant. We identified 113 matrisome proteins, including 22 proteins that have not been previously listed in the Matrisome Database. Depending on the extraction approach, the core matrisome (structural proteins) comprised 45% or 73% of kidney ECM proteins, and was dominated by glycoproteins, followed by collagens and proteoglycans. Among matrisome-associated proteins, ECM regulators had the highest LFQ intensities, followed by ECM-affiliated proteins and secreted factors. The identified kidney ECM proteins were primarily involved in cellular, developmental and metabolic processes, as well as in molecular binding and regulation of catalytic and structural molecules' activity. We also performed in silico comparative analysis of the kidney matrisome composition in humans and mice based on publicly available data. These results contribute to the first reference database for the mouse renal matrisome.


Assuntos
Proteínas da Matriz Extracelular , Espectrometria de Massas em Tandem , Humanos , Camundongos , Animais , Proteínas da Matriz Extracelular/metabolismo , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , Rim/metabolismo
20.
Semin Cell Dev Biol ; 101: 146-160, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31859147

RESUMO

Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.


Assuntos
Fibrose/tratamento farmacológico , Imunossupressores/farmacologia , Escleroderma Sistêmico/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Fibrose/imunologia , Humanos , Escleroderma Sistêmico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA