Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 241(4): 1476-1491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031641

RESUMO

Species are altering their phenology to track warming temperatures. In forests, understorey plants experience tree canopy shading resulting in light and temperature conditions, which strongly deviate from open habitats. Yet, little is known about understorey phenology responses to forest microclimates. We recorded flowering onset, peak, end and duration of 10 temperate forest understorey plant species in two mesocosm experiments to understand how phenology is affected by sub-canopy warming and how this response is modulated by illumination, which is related to canopy change. Furthermore, we investigated whether phenological sensitivities can be explained by species' characteristics, such as thermal niche. We found a mean advance of flowering onset of 7.1 d per 1°C warming, more than previously reported in studies not accounting for microclimatic buffering. Warm-adapted species exhibited greater advances. Temperature sensitivity did not differ between early- and later-flowering species. Experimental illumination did not significantly affect species' phenological temperature sensitivities, but slightly delayed flowering phenology independent from warming. Our study suggests that integrating sub-canopy temperature and light availability will help us better understand future understorey phenology responses. Climate warming together with intensifying canopy disturbances will continue to drive phenological shifts and potentially disrupt understorey communities, thereby affecting forest biodiversity and functioning.


Assuntos
Florestas , Iluminação , Estações do Ano , Ecossistema , Temperatura , Plantas , Mudança Climática
2.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273496

RESUMO

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Assuntos
Ecossistema , Florestas , Árvores , Plantas , Nitrogênio
3.
Glob Chang Biol ; 30(7): e17443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054811

RESUMO

Light availability profoundly influences plant communities, especially below dense tree canopies in forests. Canopy disturbances, altering forest floor light conditions, together with other environmental changes such as climate change, nitrogen deposition and legacy effects from previous land-use will simultaneously impact forest understorey communities. Yet, knowledge on the individual effects of these drivers and their potential interactions remains scarce. Here we performed a forest mesocosm experiment to assess the influence of warming, illumination (simulating canopy opening), nitrogen deposition and soil land-use history (comparing ancient and post-agricultural forest soil) on understorey community composition trajectories over a 7-year period. Strikingly, understorey communities primarily evolved in response to the deeply shaded ambient forest conditions, with experimental treatments exerting only secondary influences. The overruling trajectory steered all mesocosms towards slow-colonizing forest specialist communities dominated by spring geophytes with lower nutrient-demand. The illumination treatment and, to a lesser extent, warming and agricultural land-use legacy slowed down this trend by advancing fast-growing resource-acquisitive generalist species. Warm ambient temperatures induced thermophilization of plant communities in all treatments, including control plots, towards higher dominance of warm-adapted species. Nitrogen addition accelerated this thermophilization process and increased the community light-demand signature. Land-use legacy effects were limited in our study. Our findings underscore the essential role of limited light availability in preserving forest specialists in understorey communities and highlight the importance of maintaining a dense canopy cover to attenuate global change impacts. It is crucial to integrate this knowledge in forest management adaptation to global change, particularly in the face of increasing demands for wood and wood products and intensified natural canopy disturbances.


Assuntos
Mudança Climática , Florestas , Nitrogênio , Solo , Solo/química , Nitrogênio/análise , Luz , Árvores/crescimento & desenvolvimento , Temperatura , Agricultura/métodos
4.
Glob Chang Biol ; 29(11): 3054-3071, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946870

RESUMO

Climate change-related heatwaves are major threats to biodiversity and ecosystem functioning. However, our current understanding of the mechanisms governing community resistance to and recovery from extreme temperature events is still rudimentary. The spatial insurance hypothesis postulates that diverse regional species pools can buffer ecosystem functioning against local disturbances through the immigration of better-adapted taxa. Yet, experimental evidence for such predictions from multi-trophic communities and pulse-type disturbances, like heatwaves, is largely missing. We performed an experimental mesocosm study to test whether species dispersal from natural lakes prior to a simulated heatwave could increase the resistance and recovery of plankton communities. As the buffering effect of dispersal may differ among trophic groups, we independently manipulated the dispersal of organisms from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental heatwave suppressed total community biomass by having a strong negative effect on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, resulting in weaker top-down control on phytoplankton. While zooplankton dispersal did not alleviate the negative heatwave effects on zooplankton biomass, phytoplankton dispersal enhanced biomass recovery at the level of primary producers, providing partial evidence for spatial insurance. The differential responses to dispersal may be linked to the much larger regional species pool of phytoplankton than of zooplankton. Our results suggest high recovery capacity of community biomass independent of dispersal. However, community composition and trophic structure remained altered due to the heatwave, implying longer-lasting changes in ecosystem functioning.


Assuntos
Ecossistema , Plâncton , Animais , Zooplâncton/fisiologia , Biodiversidade , Biomassa , Fitoplâncton/fisiologia , Cadeia Alimentar
5.
Biol Lett ; 19(11): 20230381, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37935369

RESUMO

Freshwater habitats are drying more frequently and for longer under the combined pressures of climate change and overabstraction. Unsurprisingly, many aquatic species decline or become locally extinct as their benthic habitat is lost during stream droughts, but less is known about the potential 'winners': those terrestrial species that may exploit emerging niches in drying riverbeds. In particular, we do not know how these transient ecotones will respond as droughts become more extreme in the future. To find out we used a large-scale, long-term mesocosm experiment spanning a wide gradient of drought intensity, from permanent flows to full streambed dewatering, and analysed terrestrial invertebrate community assembly after 1 year. Droughts that caused stream fragmentation gave rise to the most diverse terrestrial invertebrate assemblages, including 10 species with UK conservation designations, and high species turnover between experimental channels. Droughts that caused streambed dewatering produced lower terrestrial invertebrate richness, suggesting that the persistence of instream pools may benefit these taxa as well as aquatic biota. Particularly intense droughts may therefore yield relatively few 'winners' among either aquatic or terrestrial species, indicating that the threat to riverine biodiversity from future drought intensification could be more pervasive than widely acknowledged.


Assuntos
Secas , Invertebrados , Animais , Ecossistema , Biodiversidade , Biota
6.
Proc Natl Acad Sci U S A ; 117(9): 4815-4822, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071250

RESUMO

A fundamental property of ecosystems is a tradeoff between the number and size of habitats: as the number of habitats within a fixed area increases, the average area per habitat must decrease. This tradeoff is termed the "area-heterogeneity tradeoff." Theoretical models suggest that the reduction in habitat sizes under high levels of heterogeneity may cause a decline in species richness because it reduces the amount of effective area available for individual species under high levels of heterogeneity, thereby increasing the likelihood of stochastic extinctions. Here, we test this prediction using an experiment that allows us to separate the effect of the area-heterogeneity tradeoff from the total effect of habitat heterogeneity. Surprisingly, despite considerable extinctions, reduction in the amount of effective area available per species facilitated rather than reduced richness in the study communities. Our data suggest that the mechanism behind this positive effect was a decrease in the probability of deterministic competitive exclusion. We conclude that the area-heterogeneity tradeoff may have both negative and positive implications for biodiversity and that its net effect depends on the relative importance of stochastic vs. deterministic drivers of extinction in the relevant system. Our finding that the area-heterogeneity tradeoff may contribute to biodiversity adds a dimension to existing ecological theory and is highly relevant for understanding and predicting biodiversity responses to natural and anthropogenic variations in the environment.

7.
Glob Chang Biol ; 28(17): 5159-5171, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35624548

RESUMO

Concentrations of terrestrial-derived dissolved organic carbon (DOC) in freshwater ecosystems have increased consistently, causing freshwater browning. The mechanisms behind browning are complex, but in forestry-intensive regions browning is accelerated by land drainage. Forestry actions in streamside riparian forests alter canopy shading, which together with browning is expected to exert a complex and largely unpredictable control over key ecosystem functions. We conducted a stream mesocosm experiment with three levels of browning (ambient vs. moderate vs. high, with 2.7 and 5.5-fold increase, respectively, in absorbance) crossed with two levels of riparian shading (70% light reduction vs. open canopy) to explore the individual and combined effects of browning and loss of shading on the quantity (algal biomass) and nutritional quality (polyunsaturated fatty acid and sterol content) of the periphytic biofilm. We also conducted a field survey of differently colored (4.7 to 26.2 mg DOC L-1 ) streams to provide a 'reality check' for our experimental findings. Browning reduced greatly the algal biomass, suppressed the availability of essential polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA), and sterols, but increased the availability of terrestrial-derived long-chain saturated fatty acids (LSAFA). In contrast, loss of shading increased primary productivity, which resulted in elevated sterol and EPA contents of the biofilm. The field survey largely repeated the same pattern: biofilm nutritional quality decreased significantly with increasing DOC, as indicated particularly by a decrease of the ω-3:ω-6 ratio and increase in LSAFA content. Algal biomass, in contrast, was mainly controlled by dissolved inorganic nitrogen (DIN) concentration, while DOC concentration was of minor importance. The ongoing browning process is inducing a dramatic reduction in the nutritional quality of the stream biofilm. Such degradation of the major high-quality food source available for stream consumers may reduce the trophic transfer efficiency in stream ecosystems, potentially extending across the stream-forest ecotone.


Assuntos
Ecossistema , Rios , Biofilmes , Florestas , Esteróis
8.
Ecol Appl ; 32(3): e2512, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34877727

RESUMO

Throughout much of the 20th century, unprecedented industrial emissions have led to widespread acidification of regions in North America and Europe and, as lake water pH dropped, aquatic ecosystems have experienced dramatic declines in biodiversity. International emission-control agreements have led to sweeping increases in lake pH, however acid-structured zooplankton communities still persist in many lakes. Concomitantly, calcium concentrations have been declining as a legacy of acidification and are approaching or have reached concentrations that could represent a barrier to the re-establishment of zooplankton communities similar to those in non-acidified or circumneutral reference lakes. To understand how declining calcium may influence the re-establishment of zooplankton in acid-damaged lakes we manipulated calcium and pH using a factorial in-lake mesocosm experiment and assessed their individual and combined effects on a regionally diverse zooplankton assemblage. We found that the impacts of low calcium on zooplankton species were similar to those of acidification and, consequently, may prevent the recovery of acid-structured communities. Abundance of the larger bodied and acid-sensitive Daphnia pulex/pulicaria increased in high pH treatments, albeit nonsignificantly yet, by the end of our experiment, only two individuals were sampled among our 10 low calcium enclosures. In contrast, small acid-tolerant cladocerans, such as Daphnia catawba, Daphnia ambigua, and eubosminids maintained significantly higher abundances in low calcium treatments relative to all other treatment combinations. Although we did not detect an effect of calcium on mean body size, the disproportionately high abundance of small cladocerans in low calcium treatments resulted in low calcium communities with higher overall abundance and lower cladoceran evenness. Our results, along with a landscape comparison demonstrating parallel changes in zooplankton relative abundance from 34 historically acidified lakes, suggests that declining calcium will be an important, on-going factor that may limit the recovery of zooplankton, despite regional improvements in lake pH.


Assuntos
Cálcio , Zooplâncton , Animais , Cálcio/análise , Ecossistema , Concentração de Íons de Hidrogênio , Lagos
9.
Ecol Lett ; 24(8): 1594-1606, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33979468

RESUMO

Ecological stability is a multidimensional construct. Investigating multiple stability dimensions is key to understand how ecosystems respond to disturbance. Here, we evaluated the single and combined effects of common agricultural stressors (insecticide, herbicide and nutrients) on four dimensions of stability (resistance, resilience, recovery and invariability) and on the overall dimensionality of stability (DS) using the results of a freshwater mesocosm experiment. Functional recovery and resilience to pesticides were enhanced in nutrient-enriched systems, whereas compositional recovery was generally not achieved. Pesticides did not affect compositional DS, whereas functional DS was significantly increased by the insecticide only in non-enriched systems. Stressor interactions acted non-additively on single stability dimensions as well as on functional DS. Moreover we demonstrate that pesticides can modify the correlation between functional and compositional aspects of stability. Our study shows that different disturbance types, and their interactions, require specific management actions to promote ecosystem stability.


Assuntos
Herbicidas , Praguicidas , Agricultura , Ecossistema , Água Doce , Herbicidas/toxicidade , Praguicidas/toxicidade
10.
Glob Chang Biol ; 27(20): 5154-5168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34157201

RESUMO

Stress factors such as climate change and drought may switch the role of temperate peatlands from carbon dioxide (CO2 ) sinks to sources, leading to positive feedback to global climate change. Water level management has been regarded as an important climate change mitigation strategy as it can sustain the natural net CO2 sink function of a peatland. Little is known about how resilient peatlands are in the face of future climate change scenarios, as well as how effectively water level management can sustain the CO2 sink function to mitigate global warming. The authors assess the effect of climate change on CO2 exchange of south Swedish temperate peatlands, which were either unmanaged or subject to water level regulation. Climate chamber simulations were conducted using experimental peatland mesocosms exposed to current and future representative concentration pathway (RCP) climate scenarios (RCP 2.6, 4.5 and 8.5). The results showed that all managed and unmanaged systems under future climate scenarios could serve as CO2 sinks throughout the experimental period. However, the 2018 extreme drought caused the unmanaged mesocosms under the RCP 4.5 and RCP 8.5 switch from a net CO2 sink to a source during summer. Surprisingly, the unmanaged mesocosms under RCP 2.6 benefited from the warmer climate, and served as the best sink among the other unmanaged systems. Water level management had the greatest effect on the CO2 sink function under RCP 8.5 and RCP 4.5, which improved their CO2 sink capability up to six and two times, respectively. Under the current climate scenario, water level management had a negative effect on the CO2 sink function, and it had almost no effect under RCP 2.6. Therefore, the researchers conclude that water level management is necessary for RCP 8.5, beneficial for RCP 4.5 and unimportant for RCP 2.6 and the current climate.


Assuntos
Dióxido de Carbono , Mudança Climática , Sequestro de Carbono , Ecossistema , Água
11.
Ecol Appl ; 31(6): e02378, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988274

RESUMO

Arbuscular mycorrhizal (AM) fungi, a group of widespread fungal symbionts of crops, could be important in driving crop yield across crop rotations through plant-soil feedbacks (PSF). However, whether preceding crops have a legacy effect on the AM fungi of the subsequent crop is poorly known. We set up an outdoor mesocosm crop rotation experiment that consisted of a first phase growing either one of four pre-crops establishing AM and/or rhizobial symbiosis or not (spring barley, faba bean, lupine, canola), followed by an AM crop, winter barley. After the pre-crop harvest, carbon-rich organic substrates were applied to test whether it attenuated, accentuated or modified the effect of pre-crops. The pre-crop mycorrhizal status, but not its rhizobial status, affected the richness and composition of AM fungi, and this difference, in particular community composition, persisted and increased in the roots of winter barley. The effect of a pre-crop was driven by its single symbiotic group, not its mixed symbiotic group and/or by a crop-species-specific effect. This demonstrates that the pre-crop symbiotic group has lasting legacy effects on the AM fungal communities and may steer the AM fungal community succession across rotation phases. This effect was accentuated by sawdust amendment, but not wheat straw. Based on the previous observation of decreased crop yield after AM pre-crops, our findings suggest negative PSF at the level of the plant symbiotic group driven by a legacy effect of crop rotation history on AM fungal communities, and that a focus on crop symbiotic group offers additional understanding of PSF.


Assuntos
Hordeum , Micobioma , Micorrizas , Raízes de Plantas , Solo , Microbiologia do Solo , Simbiose
12.
Proc Natl Acad Sci U S A ; 115(44): 11280-11285, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322907

RESUMO

Selection and drift are universally accepted as the cornerstones of evolutionary changes. Recent theories extend this view to ecological changes, arguing that any change in species composition is driven by deterministic fitness differences among species (enhancing selection) and/or stochasticity in birth and death rates of individuals within species (enhancing drift). These forces have contrasting effects on the predictability of ecological dynamics, and thus understanding the factors affecting their relative importance is crucial for understanding ecological dynamics. Here we test the hypothesis that dispersal increases the relative importance of ecological selection by increasing the effective size of the community (i.e., the size relevant for competitive interactions and drift). According to our hypothesis, dispersal increases the effective size of the community by mixing individuals from different localities. This effect diminishes the relative importance of demographic stochasticity, thereby reducing drift and increasing the relative importance of selective forces as drivers of species composition. We tested our hypothesis, which we term the "effective community size" hypothesis, using two independent experiments focusing on annual plants: a field experiment in which we manipulated the magnitude of dispersal and a mesocosm experiment in which we directly manipulated the effective size of the communities. Both experiments, as well as related model simulations, were consistent with the hypothesis that increasing dispersal increases the role of selective forces as drivers of species composition. This finding has important implications for our understanding of the fundamental forces affecting community dynamics, as well as the management of species diversity, particularly in patchy and fragmented environments.


Assuntos
Ecologia , Ecossistema , Densidade Demográfica , Dinâmica Populacional/tendências , Biodiversidade , Evolução Biológica , Demografia/estatística & dados numéricos
13.
J Environ Manage ; 286: 112160, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33611067

RESUMO

Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.


Assuntos
Mudança Climática , Áreas Alagadas , Sequestro de Carbono , Ecossistema , Hidrologia
14.
Ecotoxicol Environ Saf ; 196: 110497, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247956

RESUMO

Stresses imposed by insecticides and predators are possibly the most rigorous filters to which aquatic organisms are exposed in rivers and lakes associated with agricultural lands. However, their interactive effects on zooplankton communities are still unclear. This study elucidated the zooplankton community response to fish predation, the insecticide chlorpyrifos (CLP), and a combination of both factors, using a 30-day mesocosm experiment. The zooplankton assemblage was influenced by fish presence prior to CLP toxicity. Fish predation reduced microcrustacean density leading to a community dominated by microzooplankton (i.e.: rotifers and copepod nauplii). CLP decreased the species richness in treatments with and without fish, yielding an increase in the abundance of bdelloid rotifers, in the genera Lepadella and Trichocerca. The zooplankton:phytoplankton (<20 µm) ratio decreased substantially when the two stressors, fish predation and insecticide toxicity, were combined. Although CLP dissipated relatively rapidly in the aqueous phase and accumulated in sediment and fish tissue, zooplankton richness was unable to recover. A possible explanation for this could be the inhibitory effect of CLP on resting stage hatchings in the sediment. Therefore, the combined effects of fish predation and CLP might influence zooplankton richness, leading to an assemblage dominated by rotifers that appeared to be resistant to both factors, with a limited capability to control phytoplankton growth. Thus, the effects of natural and anthropogenic stressors should be considered together when assessing community dynamics in aquatic ecosystems.


Assuntos
Peixes/fisiologia , Inseticidas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zooplâncton/fisiologia , Animais , Clorpirifos/toxicidade , Ecossistema , Água Doce/química , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/fisiologia , Zooplâncton/efeitos dos fármacos
15.
Proc Biol Sci ; 286(1904): 20190856, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185868

RESUMO

Community rescue occurs when a community that experiences lethal stress persists only through the spread of rare types, either genotypes or species, resistant to the stress. Rescue interacts with trophic structure because physical stress experienced by a focal assemblage within the community may also be experienced by its predators and prey. In general, trophic structure will facilitate rescue only when a stress has a less severe effect on a focal assemblage than on its predators. In other circumstances, when stress affects prey or has only a weak effect on predators, trophic structure is likely to hamper rescue. We exposed a community of phytoplankton and zooplankton derived from a natural lake to acidification in outdoor mesocosms large enough to support trophically complex communities. Rescue of the phytoplankton from severe acidification was facilitated by prior exposure to sublethal stress, confirming previous results from microcosm experiments. Even communities that have previously been less highly stressed were eventually rescued, however, because their zooplankton predators were more sensitive to acidification and became extinct. Our experiment shows how community rescue following severe stress is modulated by the differential effect of the stress relative to trophic level.


Assuntos
Cadeia Alimentar , Estresse Fisiológico , Animais , Ecossistema , Concentração de Íons de Hidrogênio , Fitoplâncton/fisiologia , Dinâmica Populacional , Zooplâncton/fisiologia
16.
New Phytol ; 222(4): 1766-1777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30716175

RESUMO

Bryophytes play key roles in the ecological function of a number of major world biomes but remain understudied compared with vascular plants. Little is known about bryophyte responses to different aspects of predicted changes in moisture dynamics with climate change. In this study, CO2 fluxes and photosynthetic light responses were measured within bryophyte mesocosms, being subjected to different amounts, frequencies, and types (mist or rainfall) of water addition, both before and after different periods of complete desiccation. Bryophyte carbon fluxes and photosynthetic light response were generally affected by the magnitude and type, but not frequency, of watering events. Desiccation suppressed bryophyte carbon uptake even after rehydration, and the degree of uptake suppression progressively increased with desiccation duration. Estimated ecosystem-level bryophyte respiration and net carbon uptake were c. 58% and c. 3%, respectively, of corresponding fluxes from tree foliage at the site. Our results suggest that a simplified representation of precipitation processes may be sufficient to accurately model bryophyte carbon cycling under future climate scenarios. Further, we find that projected increases in drought could have strong negative impacts on bryophyte and ecosystem carbon storage, with major consequences for a wide range of ecosystem processes.


Assuntos
Briófitas/fisiologia , Ciclo do Carbono , Florestas , Umidade , Clima Tropical , Análise de Variância , Briófitas/efeitos da radiação , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos da radiação , Dessecação , Ecossistema , Luz , Fotossíntese/efeitos da radiação , Chuva
17.
J Anim Ecol ; 88(10): 1486-1497, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211860

RESUMO

Arthropods in the leaf litter layer of forest soils influence ecosystem processes such as decomposition. Climate-change models predict both increases and decreases in average rainfall. Increased drought may have greater impacts on the litter arthropod community. In addition to affecting survival or behaviour of desiccation-sensitive species, lower rainfall may indirectly lower abundances of consumers that graze drought-stressed fungi, with repercussions for higher trophic levels. We tested the hypothesis that trophic structure will differ between the two rainfall scenarios. In particular, we hypothesized that densities of several broadly defined trophic groupings of arthropods would be lower under reduced rainfall. To test this hypothesis, we used sprinklers to impose two rainfall treatments during three growing seasons in roofed, fenced 14-m2 plots and documented changes in abundance from initial, pre-treatment densities of 39 arthropod taxa. Experimental plots were subjected to either LOW (fortnightly) or HIGH (weekly) average rainfall based upon climate models and the previous 100 years of regional weekly averages. Unroofed open plots, our reference treatment (REF), experienced higher than average rainfall during the experiment. The two rainfall extremes produced clear negative effects of lowered rainfall on major trophic groups. Broad categories of fungivores, detritivores and predators were more abundant in HIGH than LOW plots by the final year. Springtails (Collembola), which graze fungal hyphae, were 3× more abundant in the HIGH rainfall treatment. Taxa of larger-bodied fungivores and detritivores, spiders (Araneae), and non-spider predators were 2× more abundant under HIGH rainfall. Densities of mites (Acari), which include fungivores, detritivores and predators, were 1.5× greater in HIGH rainfall plots. Abundances and community structure of arthropods were similar in REF and experimental plots, showing that effects of rainfall uncovered in the experiment are applicable to nature. This pattern suggests that changes in rainfall will alter bottom-up control processes in a critical detritus-based food web of deciduous forests. Our results, in conjunction with other findings on the impact of desiccation on arthropods and fungal growth, suggest that drier conditions will depress densities of fungal consumers, causing declines in higher trophic levels, with possible impacts on soil processes and the larger forest food web.


Assuntos
Artrópodes , Animais , Clima , Mudança Climática , Ecossistema , Cadeia Alimentar
18.
Ecology ; 99(11): 2525-2534, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30218450

RESUMO

Biomass production efficiency (BPE), the ratio of biomass production to photosynthesis, varies greatly among ecosystems and typically increases with increasing nutrient availability. Reduced carbon partitioning to mycorrhizal fungi (i.e., per unit photosynthesis) is the hypothesized underlying mechanism, as mycorrhizal abundance and plant dependence on these symbionts typically decrease with increasing nutrient availability. In a mesocosm experiment with Zea mays, we investigated the effect of nitrogen (N) and phosphorus (P) addition and of mycorrhizal inoculation on BPE. Photosynthesis and respiration were measured at mesocosm scale and at leaf scale. The growth of arbuscular mycorrhizal fungi (AMF) was assessed with ingrowth bags while also making use of the difference in δ13 C between C4 plants and C3 soil. Mesocosms without AMF, that is, with pasteurized soil, were used to further explore the role of AMF. Plant growth, photosynthesis, and BPE were positively affected by P, but not by N addition. AMF biomass also was slightly higher under P addition, but carbon partitioning to AMF was significantly lower than without P addition. Interestingly, in the absence of AMF, plants that did not receive P died prematurely. Our study confirmed the hypothesis that BPE increases with increasing nutrient availability, and that carbon partitioning to AMF plays a key role in this nutrient effect. The comparison of inoculated vs. pasteurized mesocosms further suggested a lower carbon cost of nutrient uptake via AMF than via other mechanisms under nutrient rich conditions.


Assuntos
Micorrizas , Biomassa , Carbono , Ecossistema , Fósforo , Raízes de Plantas/microbiologia
19.
Glob Chang Biol ; 24(9): 4340-4356, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29768693

RESUMO

Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in the presence of parasites induced massive structural changes: amphipod abundances decreased species-specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, four degree higher temperatures in the absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19-25°C) and parasitism, simulating a prolonged heat-wave scenario, resulted in an almost complete parasite-induced extermination of the amphipod community at 25°C. In addition, at 19°C, just two degrees above the present average, a similar temperature-parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat-wave temperature of 25°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate in terms of abundance and diversity in face of anticipated global warming, functionally changing them to be dominated by infaunal species.


Assuntos
Anfípodes/parasitologia , Aquecimento Global , Interações Hospedeiro-Parasita , Temperatura Alta , Caramujos/parasitologia , Trematódeos/fisiologia , Animais , Especificidade da Espécie
20.
Microb Ecol ; 75(4): 875-887, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29026984

RESUMO

The increasing number and duration of inundations is reported to be a consequence of climate change and may severely compromise non-adapted macroorganisms. The effect of flooding events on terrestrial and aquatic microbial communities is, however, less well understood. They may respond to the changed abiotic properties of their native habitat, and the native community may change due to the introduction of alien species. We designed an experiment to investigate the effect of five different flooding durations on the terrestrial and aquatic communities of eukaryotic microorganism, using the AquaFlow mesocosms. With amplicon sequencing of the small subunit (SSU) and internal transcribed spacer (ITS) rRNA gene regions, we analyzed community compositions directly before and after flooding. Subsequently, they were monitored for another 28 days, to determine the sustainability of community changes. Our results revealed a temporary increase in similarity between terrestrial and aquatic communities according to OTU composition (operational taxonomic unit, serves as a proxy for species). Increased similarity was mainly caused by the transmission of OTUs from water to soil. A minority of these were able to persist in soil until the end of the experiment. By contrast, the vast majority of soil OTUs was not transmitted to water. Flooding duration affected the community structure (abundance) more than composition (occurrence). Terrestrial communities responded immediately to flooding and the flooding duration influenced the community changes. Independent from flooding duration, all terrestrial communities recovered largely after flooding, indicating a remarkable resilience to the applied disturbances. Aquatic communities responded immediately to the applied inundations too. At the end of the experiment, they grouped according to the applied flooding duration and the amount of ammonium and chloride that leached from the soil. This indicates a sustained long-term response of the aquatic communities to flooding events.


Assuntos
Eucariotos/classificação , Inundações , Microbiota , Microbiologia do Solo , Microbiologia da Água , Compostos de Amônio , Biodiversidade , Cloretos , Mudança Climática , DNA/análise , Ecossistema , Eucariotos/genética , Genes de RNAr/genética , Filogenia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA