Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101818, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278432

RESUMO

Gonadal white adipose tissue (gWAT) can regulate gametogenesis via modulation of neuroendocrine signaling. However, the effect of gWAT on the local microenvironment of the gonad was largely unknown. Herein, we ruled out that gWAT had a neuroendocrine effect on gonad function through a unilateral lipectomy strategy, in which cutting off epididymal white adipose tissue could reduce seminiferous tubule thickness and decrease sperm counts only in the adjacent testis and epididymis of the affected gonad. Consistent with the results in males, in females, ovary mass was similarly decreased by lipectomy. We determined that the defects in spermatogenesis were mainly caused by augmented apoptosis and decreased proliferation of germ cells. Transcriptome analysis suggested that lipectomy could disrupt immune privilege and activate immune responses in both the testis and ovary on the side of the lipectomy. In addition, lipidomics analysis in the testis showed that the levels of lipid metabolites such as free carnitine were elevated, whereas the levels of glycerophospholipids such as phosphatidylcholines and phosphatidylethanolamines were decreased, which indicated that the metabolic niche was also altered. Finally, we show that supplementation of phosphatidylcholine and phosphatidylethanolamine could partially rescue the observed phenotype. Collectively, our findings suggest that gWAT is important for gonad function by not only affecting whole-body homeostasis but also via maintaining local metabolic and immune niches.


Assuntos
Tecido Adiposo Branco , Gônadas , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Epididimo , Feminino , Masculino , Camundongos , Espermatogênese , Testículo/metabolismo
2.
EMBO J ; 38(24): e102154, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31736098

RESUMO

The function and number of muscle stem cells (satellite cells, SCs) decline with muscle aging. Although SCs are heterogeneous and different subpopulations have been identified, it remains unknown whether a specific subpopulation of muscle SCs selectively decreases during aging. Here, we find that the number of SCs expressing high level of transcription factor Pax7 (Pax7Hi ) is dramatically reduced in aged mice. Myofiber-secreted granulocyte colony-stimulating factor (G-CSF) regulates age-dependent loss of Pax7Hi cells, as the Pax7Hi SCs are replenished by exercise-induced G-CSF in aged mice. Mechanistically, we show that transcription of G-CSF (Csf3) gene in myofibers is regulated by MyoD in a metabolism-dependent manner. Furthermore, myofiber-secreted G-CSF acts as a metabolic niche factor required for establishing and maintaining the Pax7Hi SC subpopulation in adult and physiological aged mice by promoting the asymmetric division of Pax7Hi and Pax7Mi SCs. Together, our findings uncover that muscles provide a metabolic niche regulating Pax7 SC heterogeneity in mice.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem Celular , Fator Estimulador de Colônias de Granulócitos/genética , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia
3.
Ecol Lett ; 25(6): 1352-1364, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384214

RESUMO

Standard niche modelling is based on probabilistic inference from organismal occurrence data but does not benefit yet from genome-scale descriptions of these organisms. This study overcomes this shortcoming by proposing a new conceptual niche that resumes the whole metabolic capabilities of an organism. The so-called metabolic niche resumes well-known traits such as nutrient needs and their dependencies for survival. Despite the computational challenge, its implementation allows the detection of traits and the formal comparison of niches of different organisms, emphasising that the presence-absence of functional genes is not enough to approximate the phenotype. Further statistical exploration of an organism's niche sheds light on genes essential for the metabolic niche and their role in understanding various biological experiments, such as transcriptomics, paving the way for incorporating better genome-scale description in ecological studies.


Assuntos
Ecossistema , Fenótipo
4.
Trends Ecol Evol ; 38(10): 936-945, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236880

RESUMO

The environmental niche concept describes the distribution of a taxon in the environment and can be used to understand community dynamics, biological invasions, and the impact of environmental changes. The uses and applications are still restricted in microbial ecology, largely due to the complexity of microbial systems and associated methodological limitations. The development of shotgun metagenomics and metatranscriptomics opens new ways to investigate the microbial niche by focusing on the metabolic niche within the environmental space. Here, we propose the metabolic niche framework, which, by defining the fundamental and realised metabolic niche of microorganisms, has the potential to not only provide novel insights into habitat preferences and the metabolism associated, but also to inform on metabolic plasticity, niche shifts, and microbial invasions.


Assuntos
Ecossistema , Metagenômica
5.
Metabolites ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984771

RESUMO

The small molecule citrate is a key molecule that is synthesized de novo and involved in diverse biochemical pathways influencing cell metabolism and function. Citrate is highly abundant in the circulation, and cells take up extracellular citrate via the sodium-dependent plasma membrane transporter NaCT encoded by the SLC13A5 gene. Citrate is critical to maintaining metabolic homeostasis and impaired NaCT activity is implicated in metabolic disorders. Though citrate is one of the best known and most studied metabolites in humans, little is known about the consequences of altered citrate uptake and metabolism. Here, we review recent findings on SLC13A5, NaCT, and citrate metabolism and discuss the effects on metabolic homeostasis and SLC13A5-dependent phenotypes. We discuss the "multiple-hit theory" and how stress factors induce metabolic reprogramming that may synergize with impaired NaCT activity to alter cell fate and function. Furthermore, we underline how citrate metabolism and compartmentalization can be quantified by combining mass spectrometry and tracing approaches. We also discuss species-specific differences and potential therapeutic implications of SLC13A5 and NaCT. Understanding the synergistic impact of multiple stress factors on citrate metabolism may help to decipher the disease mechanisms associated with SLC13A5 citrate transport disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA