RESUMO
Histone lysine methacrylation and crotonylation are epigenetic marks that play important roles in human gene regulation. Here, we explore the molecular recognition of histone H3 peptides possessing methacryllysine and crotonyllysine at positions 18 and 9 (H3K18 and H3K9) by the AF9 YEATS domain. Our binding studies demonstrate that the AF9 YEATS domain displays a higher binding affinity for histones possessing crotonyllysine than the isomeric methacryllysine, indicating that AF9 YEATS distinguishes between the two regioisomers. Molecular dynamics simulations reveal that the crotonyllysine/methacryllysine-mediated desolvation of the AF9 YEATS domain provides an important contribution to the recognition of both epigenetic marks. These results provide important knowledge for the development of AF9 YEATS inhibitors, an area of biomedical interest.
Assuntos
Regulação da Expressão Gênica , Histonas , Proteínas Nucleares , Humanos , Histonas/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas Nucleares/metabolismoRESUMO
Collagens from a wide array of animals have been explored for use in tissue engineering in an effort to replicate the native extracellular environment of the body. Marine-derived biomaterials offer promise over their conventional mammalian counterparts due to lower risk of disease transfer as well as being compatible with more religious and ethical groups within society. Here, collagen type I derived from a marine source (Macruronus novaezelandiae, Blue Grenadier) is compared with the more established porcine collagen type I and its potential in tissue engineering examined. Both collagens were methacrylated, to allow for UV crosslinking during extrusion 3D printing. The materials were shown to be highly cytocompatible with L929 fibroblasts. The mechanical properties of the marine-derived collagen were generally lower than those of the porcine-derived collagen; however, the Young's modulus for both collagens was shown to be tunable over a wide range. The marine-derived collagen was seen to be a potential biomaterial in tissue engineering; however, this may be limited due to its lower thermal stability at which point it degrades to gelatin.
Assuntos
Bioimpressão , Animais , Materiais Biocompatíveis , Colágeno , Colágeno Tipo I , Gelatina , Hidrogéis , Mamíferos , Suínos , Engenharia Tecidual , Alicerces TeciduaisRESUMO
Tissue regeneration is regulated by the cellular microenvironment, e.g. the extracellular matrix. Here, sulfated glycosaminoglycans (GAG), are of vital importance interacting with mediator proteins and influencing their biological activity. Hence, they are promising candidates for controlling tissue regeneration. This review addresses recent achievements regarding chemically modified GAG as well as collagen/GAG-based coatings and hydrogels including (i) chemical functionalization strategies for native GAG, (ii) GAG-based biomaterial strategies for controlling cellular responses, (iii) (bio)chemical methods for characterization and iv) protein interaction profiles and attained tissue regeneration in vitro and in vivo. The potential of GAG for bioinspired, functional biomaterials is highlighted.
Assuntos
Materiais Revestidos Biocompatíveis/química , Glicosaminoglicanos/química , Hidrogéis/química , Materiais Revestidos Biocompatíveis/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Hidrogéis/metabolismo , Estrutura MolecularRESUMO
Stereolithography is a useful additive manufacturing technique for the production of scaffolds for tissue engineering. Here we present a tuneable, easy-to-manufacture, photocurable resin for use in stereolithography, based on the widely used biomaterial, poly(caprolactone) (PCL). PCL triol was methacrylated to varying degrees and mixed with photoinitiator to produce a photocurable prepolymer resin, which cured under UV light to produce a cytocompatible material. This study demonstrates that poly(caprolactone) methacrylate (PCLMA) can be produced with a range of mechanical properties and degradation rates. By increasing the degree of methacrylation (DM) of the prepolymer, the Young's modulus of the crosslinked PCLMA could be varied from 0.12-3.51 MPa. The accelerated degradation rate was also reduced from complete degradation in 17 days to non-significant degradation in 21 days. The additive manufacturing capabilities of the resin were demonstrated by the production of a variety of different 3D structures using micro-stereolithography. Here, ß-carotene was used as a novel, cytocompatible photoabsorber and enabled the production of complex geometries by giving control over cure depth. The PCLMA presented here offers an attractive, tuneable biomaterial for the production of tissue engineering scaffolds for a wide range of applications.
Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Resinas Sintéticas/química , Estereolitografia , Engenharia Tecidual , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Estrutura Molecular , Processos Fotoquímicos , Poliésteres/síntese química , Resinas Sintéticas/síntese química , beta Caroteno/químicaRESUMO
As an important natural polysaccharide biomaterial from marine organisms, alginate and its derivatives have shown great potential in the fabrication of biomedical materials such as tissue engineering, cell biology, drug delivery, and pharmaceuticals due to their excellent biological activity and controllable physicochemical properties. Ionic crosslinking is the most common method used in the preparation of alginate-based biomaterials, but ionic crosslinked alginate hydrogels are prone to decompose in physiological solution, which hinders their applications in biomedical fields. In this study, dual crosslinked alginate hydrogel microfibers were prepared for the first time. The ionic crosslinked methacrylated alginate (Alg-MA) hydrogel microfibers fabricated by Microfluidic Fabrication (MFF) system were exposed to ultraviolet (UV) light and covalent crosslink between methacrylate groups avoided the fracture of dual crosslinked macromolecular chains in organizational environment. The chemical structures, swelling ratio, mechanical performance, and stability were investigated. Cell-encapsulated dual crosslinked Alg-MA hydrogel microfibers were fabricated to explore the application in tissue engineering for the first time. The hydrogel microfibers provided an excellent 3D distribution and growth conditions for cells. Cell-encapsulated Alg-MA microfibers scaffolds with functional 3D tissue structures were developed which possessed great potential in the production of next-generation scaffolds for tissue engineering and regenerative medicine.
Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Hidrogéis/síntese química , Engenharia Tecidual/métodos , Alginatos/efeitos da radiação , Técnicas de Química Sintética/métodos , Hidrogéis/efeitos da radiação , Metacrilatos/química , Metacrilatos/efeitos da radiação , Microquímica/métodos , Técnicas Analíticas Microfluídicas , Alicerces Teciduais/química , Raios UltravioletaRESUMO
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Assuntos
Cromo , Lignina , Poluentes Químicos da Água , Lignina/química , Cromo/química , Cromo/isolamento & purificação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Polímeros/química , Polímeros/síntese química , Água/química , Concentração de Íons de Hidrogênio , PolimerizaçãoRESUMO
Reuniting denuded nerve ends after a long segmental peripheral nerve defect is challenging due to delayed axonal regeneration and incomplete, nonspecific reinnervation, as conventional hollow nerve guides fail to ensure proper fascicular complementation and obstruct axonal guidance across the defects. This study focuses on fabricating multifilament conduits using a plant-derived anionic polysaccharide, pectin, where the abundant availability of carboxylate (COO-) functional groups in pectin facilitates instantaneous sol-gel transition upon interaction with divalent cations. Despite their advantages, pectin hydrogels encounter structural instability under physiological conditions. Hence, pectin is conjugated with light-sensitive methacrylate residues (49.8% methacrylation) to overcome these issues, enabling the fabrication of dual cross-linked multifilament nerve conduits through an ionic interaction-driven, template-free 3D wet writing process, followed by photo-cross-linking at 525 nm. The anatomical equivalence including peri-, epi-, and endoneurium structures of the customized multifilament conduits was confirmed through scanning electron micrographs and micro-CT analysis of rat and goat sciatic nerve tissues. Furthermore, the fabricated multifilament nerve conduits demonstrated cytocompatibility and promoted the expression of neuron-specific intermediate filament protein (NF-200) in PC12 cells and neurite outgrowth of 16.90 ± 1.82 µm on day 14. Micro-CT imaging of an anastomosed native goat sciatic nerve with an 8-filament conduit demonstrated precise fascicular complementation in an ex vivo interpositional goat model. This approach not only eliminates the need for a suture-intensive ligation process but also highlights the customizability of multifilament conduits to meet patient- and injury-specific needs.
Assuntos
Materiais Biocompatíveis , Teste de Materiais , Pectinas , Pectinas/química , Animais , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático , Tamanho da Partícula , Alicerces Teciduais/química , Hidrogéis/química , Células PC12 , Regeneração Tecidual Guiada/métodosRESUMO
Mucin glycoproteins are ideal biomacromolecules for drug delivery applications since they naturally offer a plethora of different functional groups that can engage in specific and unspecific binding interactions with cargo molecules. However, to fabricate drug carrier objects from mucins, suitable stabilization mechanisms have to be implemented into the nanoparticle preparation procedure that allow for drug release profiles that match the requirements of the selected cargo molecule and its particular mode of action. Here, we describe two different methods to prepare crosslinked mucin nanoparticles that can release their cargo either on-demand or in a sustained manner. This method chapter includes a description of the preparation and characterization of mucin nanoparticles (stabilized either with synthetic DNA strands or with covalent crosslinks generated by free radical polymerization), as well as protocols to quantify the release of a model drug from those nanoparticles.
Assuntos
Mucinas , Nanopartículas , Mucinas/metabolismo , Sistemas de Liberação de Medicamentos , Glicoproteínas , Portadores de Fármacos/química , Nanopartículas/químicaRESUMO
Porous starch materials are promising in several applications as renewable natural biomaterials. This study reports an approach combining methacrylation of starch and chemical crosslinked cryogelation to fabricate highly elastic macroporous starch (ST-MA) cryogels with impressed water/oil absorption capacity and wet thermal stability among starch based porous materials. Five different types of starch, including pea, normal corn, high amylose corn, tapioca, and waxy maize starch with different amylose content, have been studied. The methacrylation degree is not related with amylose content. All cryogels exhibited excellent compressive elasticity enduring 90 % deformation without failure and good robustness in cyclic tests. The ST-MA cryogels from pea starch exhibited the highest Young's modulus and compressive strength among five types of starch. These covalent cryogels exhibit high wet-thermal stability and enzymatic hydrolysis stability, while still are biodegradable. The dry ST-MA sponges (2 wt%) showed outstanding liquid absorption capacity, absorbing ~40 folds (g/g) of water or ~ 36 folds (g/g) of oil respectively. All types of starch have similar liquid absorption performance. This study provides a universal approach to fabricate highly elastic covalent starch macroporous materials with impressed liquid absorption capacity and outstanding stability, especially wet-thermal stability, and may expand their applications.
RESUMO
Chitosan is a very promising material for tissue model printing. It is also known that the introduction of chemical modifications to the structure of the material in the form of methacrylate groups makes it very attractive for application in the bioprinting of tissue models. The aim of this work is to study the characteristics of biomaterials containing chitosan (BCH) and its methacrylated equivalent (BCM) in order to identify differences in their usefulness in 3D bioprinting technology. It has been shown that the BCM material containing methacrylic chitosan is three times more viscous than its non-methacrylated BCH counterpart. Additionally, the BCM material is characterized by stability in a larger range of stresses, as well as better printability, resolution, and fiber stability. The BCM material has higher mechanical parameters, both mechanical strength and Young's modulus, than the BCH material. Both materials are ideal for bioprinting, but BCM has unique rheological properties and significant mechanical resistance. In addition, biological tests have shown that the addition of chitosan to biomaterials increases cell proliferation, particularly in 3D-printed models. Moreover, modification in the form of methacrylation encourages reduced toxicity of the biomaterial in 3D constructs. Our investigation demonstrates the suitability of a chitosan-enhanced biomaterial, specifically methacrylate-treated, for application in tissue engineering, and particularly for tissues requiring resistance to high stress, i.e., vascular or cartilage models.
RESUMO
The importance of hydrogels in tissue engineering cannot be overemphasized due to their resemblance to the native extracellular matrix. However, natural hydrogels with satisfactory biocompatibility exhibit poor mechanical behavior, which hampers their application in stress-bearing soft tissue engineering. Here, we describe the fabrication of a double methacrylated gelatin bioink covalently linked to graphene oxide (GO) via a zero-length crosslinker, digitally light-processed (DLP) printable into 3D complex structures with high fidelity. The resultant natural hydrogel (GelGOMA) exhibits a conductivity of 15.0 S m-1as a result of the delocalization of theπ-orbital from the covalently linked GO. Furthermore, the hydrogel shows a compressive strength of 1.6 MPa, and a 2.0 mm thick GelGOMA can withstand a 1.0 kg ms-1momentum. The printability and mechanical strengths of GelGOMAs were demonstrated by printing a fish heart with a functional fluid pumping mechanism and tricuspid valves. Its biocompatibility, electroconductivity, and physiological relevance enhanced the proliferation and differentiation of myoblasts and neuroblasts and the contraction of human-induced pluripotent stem cell-derived cardiomyocytes. GelGOMA demonstrates the potential for the tissue engineering of functional hearts and wearable electronic devices.
Assuntos
Materiais Biocompatíveis , Condutividade Elétrica , Grafite , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Grafite/química , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Humanos , Gelatina/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.
Assuntos
Matriz Extracelular , Hidrogéis , Metacrilatos , Polimerização , Animais , Metacrilatos/química , Suínos , Hidrogéis/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fígado , Humanos , Impressão Tridimensional , Processos Fotoquímicos , Bioimpressão/métodos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Reagentes de Ligações Cruzadas/química , Compostos de Epóxi/químicaRESUMO
Critically-sized segmental bone defects represent significant challenges requiring grafts for reconstruction. 3D-printed synthetic bone grafts are viable alternatives to structural allografts if engineered to provide appropriate mechanical performance and osteoblast/osteoclast cell responses. Novel 3D-printable nanocomposites containing acrylated epoxidized soybean oil (AESO) or methacrylated AESO (mAESO), polyethylene glycol diacrylate, and nanohydroxyapatite (nHA) were produced using masked stereolithography. The effects of volume fraction of nHA and methacrylation of AESO on interactions of differentiated MC3T3-E1 osteoblast (dMC3T3-OB) and differentiated RAW264.7 osteoclast cells with 3D-printed nanocomposites were evaluated in vitro and compared with a control biomaterial, hydroxyapatite (HA). Higher nHA content and methacrylation significantly improved the mechanical properties. All nanocomposites supported dMC3T3-OB cells' adhesion and proliferation. Higher amounts of nHA enhanced cell adhesion and proliferation. mAESO in the nanocomposites resulted in greater adhesion, proliferation, and activity at day 7 compared with AESO nanocomposites. Excellent osteoclast-like cells survival, defined actin rings, and large multinucleated cells were only observed on the high nHA fraction (30%) mAESO nanocomposite and the HA control. Thus, mAESO-based nanocomposites containing higher amounts of nHA have better interactions with osteoblast-like and osteoclast-like cells, comparable with HA controls, making them a potential future alternative graft material for bone defect repair.
Assuntos
Materiais Biocompatíveis , Nanocompostos , Osteoblastos , Impressão Tridimensional , Nanocompostos/química , Animais , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/metabolismo , Adesão Celular/efeitos dos fármacos , Células RAW 264.7 , Proliferação de Células/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Linhagem Celular , Teste de Materiais , Óleo de Soja/química , Osso e Ossos/efeitos dos fármacosRESUMO
Natural polysaccharides have recently attracted attention as structural biomaterials to replace focal chondral defects. In the present study, in-vitro tribological performance of methacrylated κ-carrageenan and gellan gum hydrogels (KA-MA and GG-MA) was evaluated under physiological conditions. Coefficient of friction (COF) was continuously recorded over testing whilst worn area was measured post-testing. The findings help improve our understanding of KA-MA-H and GG-MA-H tribological performance under various physiological conditions. The friction and wear performance of the hydrogels improved in bovine calf serum lubricant at lower applied loads. Adhesion was the dominant wear mechanism detected by SEM. Among the proposed hydrogels GG-MA-H found robust mechanical properties, increased wear resistance and considerably low COF, which may suggest its potential usage as a cartilage substitute.
Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Bovinos , Hidrogéis/química , Carragenina , Polissacarídeos Bacterianos/químicaRESUMO
Marine-origin gelatin has been increasingly used as a safe alternative to bovine and porcine ones due to their structural similarity, avoiding the health-related problems and sociocultural concerns associated with using mammalian-origin materials. Another benefit of marine-origin gelatin is that it can be produced from fish processing-products enabling high production at low cost. Recent studies have demonstrated the excellent capacity of gelatin-methacryloyl (GelMA)-based hydrogels in a wide range of biomedical applications due to their suitable biological properties and tunable physical characteristics, such as tissue engineering applications, including the engineering of cartilage. In this study, fish gelatin was obtained from Greenland halibut skins by an acidic extraction method and further functionalized by methacrylation using methacrylic anhydride, developing a photosensitive gelatin-methacryloyl (GelMA) with a degree of functionalization of 58%. The produced marine GelMA allowed the fabrication of photo-crosslinked hydrogels by incorporating a photoinitiator and UV light exposure. To improve the biological performance, GelMA was combined with two glycosaminoglycans (GAGs): hyaluronic acid (HA) and chondroitin sulfate (CS). GAGs methacrylation reaction was necessary, rendering methacrylated HA (HAMA) and methacrylated CS (CSMA). Three different concentrations of GelMA were combined with CSMA and HAMA at different ratios to produce biomechanically stable hydrogels with tunable physicochemical features. The 20% (w/v) GelMA-based hydrogels produced in this work were tested as a matrix for chondrocyte culture for cartilage tissue engineering with formulations containing both HAMA and CSMA showing improved cell viability. The obtained results suggest these hybrid hydrogels be used as promising biomaterials for cartilage tissue engineering applications.
RESUMO
Different parts of bones possess different properties, such as the capacity for remodeling cell content, porosity, and protein composition. For various traumatic or surgical tissue defects, the application of tissue-engineered constructs seems to be a promising strategy. Despite significant research efforts, such constructs are still rarely available in the clinic. One of the reasons is the lack of resorbable materials, whose properties can be adjusted according to the intended tissue or tissue contacts. Here, we present our first results on the development of a toolbox, by which the scaffolds with easily tunable mechanical and biological properties could be prepared. Biodegradable poly(lactic acid) and nanocrystalline cellulose methacrylated particles were obtained, characterized, and used for preparation of three-dimensional scaffolds via cryogelation and 3D printing approaches. The composition of particles-based ink for 3D printing was optimized in order to allow formation of stable materials. Both the modified-particle cytotoxicity and the matrix-supported cell adhesion were evaluated and visualized in order to confirm the perspectives of materials application.
RESUMO
Melanoma is an aggressive type of skin cancer that accounts for over 75% of skin cancer deaths despite comprising less than 5% of all skin cancers. Despite promising improvements in surgical approaches for melanoma resection, the survival of undetectable microtumor residues has remained a concern. As a result, hyperthermia- and drug-based therapies have grown as attractive techniques to target and treat cancer. In this work, we aim to develop a stimuli-responsive hydrogel based on chitosan methacrylate (ChiMA), porcine small intestine submucosa methacrylate (SISMA), and doxorubicin-functionalized reduced graphene oxide (rGO-DOX) that eliminates microtumor residues from surgically resected melanoma through the coupled effect of NIR light-induced photothermal therapy and heat-induced doxorubicin release. Furthermore, we developed an in silico model to optimize heat and mass transport and evaluate the proposed chemo/photothermal therapy in vitro over melanoma cell cultures.
RESUMO
Hybrid-crosslinked systems, which can be formed using heat and visible light, are significant for improving the stability of hydrogels under physiological conditions. However, several challenges for their practical application remain, such as shrinking under culture medium conditions or the neutral pH in the small intestine. Therefore, a multi-sensitive hydrogel with response to external conditions has been designed and prepared, which could be employed as a biopolymer ink formulation for three-dimensional printing in bioengineering applications. When exposed to body temperature and visible light, the N-succinyl hydroxybutyl methacrylated chitosan (NS-HBC-MA) undergoes a sol-gel phase transition. The NS-HBC-MA hydrogel exhibits pH-responsive swelling, effectively preventing shrinkage at a neutral pH. Furthermore, NS-HBC-MA hydrogel demonstrates excellent biocompatibility and biodegradability. This study demonstrates that the NS-HBC-MA hydrogel has significant potential for various applications, including wound healing, delivery systems, and tissue engineering.
Assuntos
Quitosana , Biopolímeros , Hidrogéis , Concentração de Íons de Hidrogênio , Temperatura , Engenharia TecidualRESUMO
As the most abundant protein in the extracellular matrix, collagen has become widely studied in the fields of tissue engineering and regenerative medicine. Of the various collagen types, collagen type I is the most commonly utilised in laboratory studies. In tissues, collagen type I forms into fibrils that provide an extended fibrillar network. In tissue engineering and regenerative medicine, little emphasis has been placed on the nature of the network that is formed. Various factors could affect the network structure, including the method used to extract collagen from native tissue, since this may remove the telopeptides, and the nature and extent of any chemical modifications and crosslinking moieties. The structure of any fibril network affects cellular proliferation and differentiation, as well as the overall modulus of hydrogels. In this study, the network-forming properties of two distinct forms of collagen (telo- and atelo-collagen) and their methacrylated derivatives were compared. The presence of the telopeptides facilitated fibril formation in the unmodified samples, but this benefit was substantially reduced by subsequent methacrylation, leading to a loss in the native self-assembly potential. Furthermore, the impact of the methacrylation of the collagen, which enables rapid crosslinking and makes it suitable for use in 3D printing, was investigated. The crosslinking of the methacrylated samples (both telo- and atelo-) was seen to improve the fibril-like network compared to the non-crosslinked samples. This contrasted with the samples of methacrylated gelatin, which showed little, if any, fibrillar or ordered network structure, regardless of whether they were crosslinked.
RESUMO
The polyesters poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) used in various applications such as food packaging or 3D printing were depolymerized by biobased aliphatic alcohols-methanol and ethanol with the presence of para-toluenesulphonic acid (p-TSA) as a catalyst at a temperature of 151 °C. It was found that the fastest depolymerization is reached using methanol as anucleophile for the reaction with PLA, resulting in the value of reaction rate constant (k) of 0.0425 min-1 and the yield of methyl lactate of 93.8% after 120 min. On the other hand, the value of constant k for the depolymerization of PHB in the presence of ethanol reached 0.0064 min-1 and the yield of ethyl 3-hydroxybutyrate was of 76.0% after 240 min. A kinetics study of depolymerization was performed via LC-MS analysis of alkyl esters of lactic acid and 3-hydroxybutanoic acid. The structure confirmation of the products was performed via FT-IR, MS, 1H NMR, and 13C NMR. Synthesized alkyl lactates and 3-hydroxybutyrates were modified into polymerizable molecules using methacrylic anhydride as a reactant and potassium 2-ethylhexanoate as a catalyst at a temperature of 80 °C. All alkyl esters were methacrylated for 24 h, guaranteeing the quantitative yield (which in all cases reached values equal to or of more than 98%). The methacrylation rate constants (k') were calculated to compare the reaction kinetics of each alkyl ester. It was found that lactates reach afaster rate of reaction than 3-hydroxybutyrates. The value of k' for themethacrylated methyl lactate reached 0.0885 dm3/(mol·min). Opposite to this result, methacrylated ethyl 3-hydroxybutyrate's constant k' was 0.0075 dm3/(mol·min). The reaction rate study was conducted by the GC-FID method and the structures were confirmed via FT-IR, MS, 1H NMR, and 13C NMR.