Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 30(4): 435-447, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38296629

RESUMO

The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética
2.
RNA ; 28(6): 854-864, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332065

RESUMO

The chondrocyte-specific miR-140 miRNAs are necessary for normal endochondral bone growth in mice. miR-140 deficiency causes dwarfism and craniofacial deformity. However, the physiologically important targets of miR-140 miRNAs are still unclear. The miR-140 gene (Mir140) encodes three chondrocyte-specific microRNAs, miR-140-5p, derived from the 5' strand of primary miR-140, and miR140-3p.1 and -3p.2, derived from the 3' strand of primary miR-140. miR-140-3p miRNAs are 10 times more abundant than miR-140-5p likely due to the nonpreferential loading of miR-140-5p to Argonaute proteins. To differentiate the role of miR-140-5p and -3p miRNAs in endochondral bone development, two distinct mouse models, miR140-C > T, in which the first nucleotide of miR-140-5p was altered from cytosine to uridine, and miR140-CG, where the first two nucleotides of miR-140-3p were changed to cytosine and guanine, were created. These changes are expected to alter Argonaute protein loading preference of -5p and -3p to increase -5p loading and decrease -3p loading without changing the function of miR140-5p. These models presented a mild delay in epiphyseal development with delayed chondrocyte maturation. Using RNA-sequencing analysis of the two models, direct targets of miR140-5p, including Wnt11, were identified. Disruption of the predicted miR140-5p binding site in the 3' untranslated region of Wnt11 was shown to increase Wnt11 mRNA expression and caused a modest acceleration of epiphyseal development. These results show that the relative abundance of miRNA-5p and -3p can be altered by changing the first nucleotide of miRNAs in vivo, and this method can be useful to identify physiologically important miRNA targets.


Assuntos
MicroRNAs , Regiões 3' não Traduzidas , Animais , Citosina , Camundongos , MicroRNAs/metabolismo , Nucleotídeos
3.
J Bioenerg Biomembr ; 56(1): 1-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994971

RESUMO

White matter injury (WMI) resulting from intracerebral hemorrhage (ICH) is closely associated with adverse prognoses in ICH patients. Although Circ-AGTPBP1 has been reported to exhibit high expression in the serum of premature infants with WMI, its effects and mechanisms in ICH-induced WMI remain unclear. This study aimed to investigate the role of circ-AGTPBP1 in white matter injury after intracerebral hemorrhage. An intracerebral hemorrhage rat model was established by injecting autologous blood into rat left ventricles and circ-AGTPBP1 was knocked down at the ICH site using recombinant adeno-associated virus, AAV2/9. Magnetic resonance imaging (MRI) and gait analysis were conducted to assess long-term neurobehavioral effects. Primary oligodendrocyte progenitor cells (OPCs) were isolated from rats and overexpressed with circ-AGTPBP1. Downstream targets of circ-AGTPBP1 in OPCs were investigated using CircInteractome, qPCR, FISH analysis, and miRDB network. Luciferase gene assay was utilized to explore the relationship between miR-140-3p and Pcdh17 in OPCs and HEK-293T cells. Finally, CCK-8 assay, EdU staining, and flow cytometry were employed to evaluate the effects of mi-RNA-140-3p inhibitor or silencing of sh-pcd17 on the viability, proliferation, and apoptosis of OPCs. Low expression of circ-AGTPBP1 alleviates white matter injury and improves neurological functions in rats after intracerebral hemorrhage. Conversely, overexpression of circ-AGTPBP1 reduces the proliferative and migrative potential of oligodendrocyte progenitor cells and promotes apoptosis. CircInteractome web tool and qPCR confirmed that circ-AGTPBP1 binds with miR-140-3p in OPCs. Additionally, miRDB network predicted Pcdh17 as a downstream target of miR-140-3p. Moreover, pcdh17 expression was increased in the brain tissue of rats with intracerebral-induced white matter injury. Furthermore, inhibiting miR-140-3p suppressed the proliferation and migration of OPCs and facilitated apoptosis through Pcdh17. Circ-AGTPBP1 promotes white matter injury through modulating the miR-140-3p/Pcdh17 axis. The study provides a new direction for developing therapeutic strategies for white matter injury.


Assuntos
MicroRNAs , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Substância Branca , Humanos , Animais , Ratos , Apoptose , Hemorragia Cerebral , Células HEK293 , Proliferação de Células , Proteínas de Ligação ao GTP
4.
Cell Mol Biol Lett ; 29(1): 56, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643083

RESUMO

During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.


Assuntos
Chifres de Veado , Proteínas de Homeodomínio , MicroRNAs , Animais , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Biochem Genet ; 62(1): 125-143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37284894

RESUMO

Circular RNA (circRNA) has been confirmed to regulate breast cancer (BC) progression. However, the role of circ_0059457 in BC progression is still unclear.The expression of circ_0059457, taspase 1 (TASP1), microRNA (miR)-140-3p and ubiquitin-binding enzyme E2C (UBE2C) was detected by quantitative real-time PCR. Cell proliferation, migration, invasion and sphere formation ability were assessed by cell counting kit-8 assay, EdU assay, wound healing assay, transwell assay and sphere formation assay. Cell glycolysis was assessed by detecting glucose uptake, lactate levels and ATP/ADP ratio. Dual-luciferase reporter assay, RIP assay, RNA pull-down assay were used to validate RNA interaction. Xenograft tumor model to assess the effect of circ_0059457 on BC tumor growth in vivo. Circ_0059457 had elevated expression in BC tissues and cells. Circ_0059457 knockdown inhibited BC cell proliferation, metastasis, sphere formation ability, and glycolysis. In terms of mechanism, circ_0059457 sponged miR-140-3p, and miR-140-3p targeted UBE2C. MiR-140-3p inhibition reversed the effect of circ_0059457 knockdown on BC cell malignant behaviors. Besides, miR-140-3p overexpression inhibited BC cell proliferation, metastasis, sphere formation ability and glycolysis, and these effects were abrogated by UBE2C enhancement. Furthermore, circ_0059457 regulated UBE2C expression through sponging miR-140-3p. Additionally, circ_0059457 knockdown obviously inhibited BC tumor growth in vivo. Circ_0059457 promoted BC progression via miR-140-3p/UBE2C axis, which provided potential target for the treatment of BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Glicólise , Proliferação de Células , Modelos Animais de Doenças , MicroRNAs/genética , Linhagem Celular Tumoral , Enzimas de Conjugação de Ubiquitina/genética
6.
Environ Toxicol ; 39(3): 1521-1530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009637

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are associated with cancer progression. MiR-140-3p is a tumor suppressor. Nevertheless, its function in non-small cell lung cancer (NSCLC) is unclear. METHODS: MiR-140-3p expression in NSCLC clinical specimens was examined using the TCGA database and real-time PCR. NSCLC cell proliferation and apoptosis were investigated after the miRNA overexpression. Then, mineral dust-induced gene (MDIG) levels in NSCLC clinical specimens were monitored by real-time PCR and western blotting. Bioinformatics predicated the binding of miR-140-3p to MDIG, and their relationship was validated by luciferase reporter assay. The miR-140-3p/MDIG axis was further validated through rescue experiments. The involvement of STAT3 signaling in the actions of miR-140-3p/MDIG axis was investigated. RESULTS: MiR-140-3p was decreased in NSCLC tissues and negatively correlated with MDIG expression. Additionally, it was also lower in high-grade specimens than in low-grade ones. MiR-140-3p restrained cell proliferation, facilitated apoptosis, and inhibited STAT3 signaling in NSCLC. Interestingly, MDIG was a target of this miRNA. Furthermore, MDIG upregulation abolished miR-140-3p's effect on cell proliferation, apoptosis, and STAT3 pathway in NSCLC cells. CONCLUSION: MiR-140-3p restrained NSCLC development through the regulation of the STAT3 pathway by targeting MDIG. This axis may be a promising target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo
7.
Apoptosis ; 28(7-8): 1024-1034, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37041422

RESUMO

BACKGROUND: Pancreatic cancer (PC) is amongst the most lethal gastrointestinal tumors, which is the seventh leading reason of cancer-related mortality worldwide. Previous studies have indicated that circular RNAs (circRNAs), which is a new type of endogenous noncoding RNA (ncRNA), can mediate tumor progression in diverse tumor types including PC. Whereas precise roles regarding circRNAs and their underlying regulatory mechanisms in PC remain unknown. METHODS: In the current study, we employed next generation sequencing (NGS) to characterize abnormally expressed circRNAs among PC tissues. Next, we assessed expression levels of one identified circRNA, circ-STK39, in PC cell lines and tissues. Then, using bioinformatics analysis, luciferase reporter, Transwell migration, EdU and CCK-8 assays, we examined the regulatory mechanisms and targets of circ-STK39. Finally, our group explored the circ-STK39 role in PC tumor growth and metastasis in vivo. RESULTS: Our team discovered that circ-STK39 expression increased in PC tissues and cells, suggesting that circ-STK39 may have a role in PC progression. Downregulation of circ-STK39 inhibited PC proliferation and migration. Bioinformatics and luciferase reporter outcomes demonstrated that TRAM2 and miR-140-3p were circ-STK39 downstream targets. TRAM2 overexpression reversed the miR-140-3p overexpression effects upon migration, proliferation and the epithelial-mesenchymal transition (EMT). CONCLUSION: In this regard, we showed that circ-STK39 downregulation led to decreased migration, proliferation and the EMT of PC via the miR-140-3p/TRAM2 axis.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Transição Epitelial-Mesenquimal/genética , Regulação para Baixo/genética , RNA Circular/genética , Apoptose , Neoplasias Pancreáticas/genética , MicroRNAs/genética , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases , Glicoproteínas de Membrana , Neoplasias Pancreáticas
8.
Clin Exp Nephrol ; 27(1): 12-23, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36083527

RESUMO

BACKGROUND: Hsa_circ_0080425 (circ_0080425) is newly identified to correlate with the progression of diabetic nephropathy (DN). However, its role and mechanism in DN process is not very clear. METHODS: Cell counting kit-8 assay, flow cytometry, scratch wound assay, and western blotting were performed to measure endothelial cell dysfunction. Expression of circ_0080425, microRNA (miR)-140-3p and fibronectin 1 (FN1) were determined by quantitative real-time PCR and western blotting. The direct interaction was confirmed by dual-luciferase reporter assay. RESULTS: High-glucose (HG) treatment could induce inhibition of cell proliferation, cell cycle entrance and wound healing rate in human umbilical vein endothelial cells (HRGEC), and enhancement of apoptosis rate. Circ_0080425 expression was upregulated by HG, and exhausting circ_0080425 could attenuate HG-induced above effects in HRGEC. MiR-140-3p was sponged by circ_0080425, and its inhibitor reversed the regulation of circ_0080425 knockdown on HG-induced HRGEC injury. FN1 was targeted by miR-140-3p, and its overexpression also restored the inhibitory effect of miR-140-3p on HC-induced HRGEC injury. CONCLUSION: Circ_0080425 expression might contribute to HG-induced endothelial cell injury, and circ_0080425/miR-140-3p/FN1 axis was a potential therapeutic approach to interfere DN process.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Humanos , Nefropatias Diabéticas/genética , Fibronectinas/genética , Células Endoteliais da Veia Umbilical Humana , Apoptose , Proliferação de Células , Glucose/toxicidade , MicroRNAs/genética
9.
Dig Dis Sci ; 67(8): 3725-3741, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417924

RESUMO

BACKGROUND: Long noncoding RNA colon cancer-associated transcript 1 (LncRNA CCAT1) is highly expressed in gastric cancer tissues and plays a role in autophagy. However, the underlying mechanism still needs to be further clarified. OBJECTIVE: To study the role of LncRNA CCAT1 in regulating autophagy of gastric cancer cells, analyze its downstream targets, and elucidate the mechanism. METHODS: qPCR detected the expression of LncRNA CCAT1 in gastric cancer cells. The proliferation, migration, and invasion ability of LncRNA CCAT1 and the expression level of autophagy-related proteins in gastric cancer cells were detected. Bioinformatics method predicted the downstream targets of LncRNA CCAT1, and they were verified by dual-luciferase assay. The relationship between LncRNA CCAT1, miR-140, and ATG5 was verified by co-transfection, and the expression levels of ATG5 and ATG5-ATG12 complex proteins were detected. Finally, the role of LncRNA CCAT1 in vivo was confirmed by gastric cancer transplantation model. RESULTS: LncRNA CCAT1 was highly expressed in gastric cancer cells. LncRNA CCAT1 can promote the proliferation, migration, invasion, and autophagy activity of gastric cancer cells. LncRNA CCAT1 can bind to miR-140-3p and regulate its expression, while miR-140-3p further regulates the expression of ATG5. Overexpression of LncRNA CCAT1 can promote tumor growth in nude mice. After LncRNA CCAT1 silencing, the positive expression rate of ATG5 in nude mice was low. CONCLUSION: LncRNA CCAT1 may inhibit the expression of miR-140-3p by sponge adsorption, thus weakening its inhibitory effect on ATG5. Eventually, gastric cancer cells were more prone to autophagy under the pressure of stress.


Assuntos
Neoplasias do Colo , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia
10.
J Nanobiotechnology ; 20(1): 97, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236339

RESUMO

BACKGROUND: Diabetes mellitus (DM) is considered to be an important factor for bone degeneration disorders such as bone defect nonunion, which is characterized by physical disability and tremendous economy cost to families and society. Exosomal miRNAs of BMSCs have been reported to participate in osteoblastogenesis and modulating bone formation. However, their impacts on the development of bone degeneration in DM are not yet known. The role of miRNAs in BMSCs exosomes on regulating hyperglycemia bone degeneration was investigated in the present study. RESULTS: The osteogenic potential in bone defect repair of exosomes derived from diabetes mellitus BMSCs derived exosomes (DM-Exos) were revealed to be lower than that in normal BMSCs derived exosomes (N-Exos) in vitro and in vivo. Here, we demonstrate that miR-140-3p level was significantly altered in exosomes derived from BMSCs, ADSCs and serum from DM rats. In in vitro experiments, upregulated miR-140-3p exosomes promoted DM BMSCs differentiation into osteoblasts. The effects were exerted by miR-140-3p targeting plxnb1, plexin B1 is the receptor of semaphoring 4D(Sema4D) that inhibited osteocytes differentiation, thereby promoting bone formation. In DM rats with bone defect, miR-140-3p upregulated exosomes were transplanted into injured bone and accelerated bone regeneration. Besides, miR-140-3p in the exosomes was transferred into BMSCs and osteoblasts and promoted bone regeneration by targeting the plexin B1/RohA/ROCK signaling pathway. CONCLUSIONS: Normal-Exos and miR-140-3p overexpressed-Exos accelerated diabetic wound healing by promoting the osteoblastogenesis function of BMSCs through inhibition plexin B1 expression which is the receptor of Sema4D and the plexin B1/RhoA/ROCK pathway compared with diabetes mellitus-Exos. This offers a new insight and a new therapy for treating diabetic bone unhealing.


Assuntos
Diabetes Mellitus Experimental , Exossomos , MicroRNAs , Animais , Proliferação de Células , Exossomos/metabolismo , Proteínas Ativadoras de GTPase , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Receptores de Superfície Celular
11.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1365-1375, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36148952

RESUMO

Renal fibrosis is most common among chronic kidney diseases. Molecular studies have shown that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) participate in renal fibrosis, while the roles of lncRNA taurine upregulated gene 1 (TUG1) and miR-140-3p in hyperuricemia-induced renal fibrosis remain less investigated. In this study, a rat hyperuricemia model is constructed by oral administration of adenine. TUG1, miR-140-3p, and cathepsin D (CtsD) expression levels in rat models are measured. After altering TUG1, miR-140-3p, or CtsD expression in modelled rats, biochemical indices, including uric acid (UA), serum creatine (SCr), blood urea nitrogen (BUN), and 24-h urine protein are detected, pathological changes in the renal tissues, and renal fibrosis are examined. In renal tissues from hyperuricemic rats, TUG1 and CtsD are upregulated, while miR-140-3p is downregulated. Inhibiting TUG1 or CtsD or upregulating miR-140-3p relieves renal fibrosis in hyperuricemic rats. Downregulated miR-140-3p reverses the therapeutic effect of TUG1 reduction, while overexpression of CtsD abolishes the role of miR-140-3p upregulation in renal fibrosis. Collectively, this study highlights that TUG1 inhibition upregulates miR-140-3p to ameliorate renal fibrosis in hyperuricemic rats by inhibiting CtsD.


Assuntos
Hiperuricemia , Nefropatias , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Taurina , Hiperuricemia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nefropatias/genética , Fibrose , Proliferação de Células/genética
12.
J Cell Biochem ; 122(10): 1491-1505, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34180077

RESUMO

Syndecan-4, a predicted target of the microRNA miR-140-3p, plays an important role in multiple steps of tumor progression and is the second most abundant heparan sulfate proteoglycan produced by breast carcinoma cell lines. To investigate the potential functional relationship of miR-140-3p and syndecan-4, MDA-MB-231, SKBR3, and MCF-7 breast cancer (BC) cells were transiently transfected with pre-miR-140-3p, syndecan-4 small interfering RNAJ, or control reagents, respectively. Altered cell behavior was monitored by adhesion, migration, and invasion chamber assays. Moreover, the prognostic value of syndecan-4 was assessed by Kaplan-Maier Plotter analysis of gene expression data from tumor samples of 4929 patients. High expression of syndecan-4 was associated with better relapse-free survival in the whole collective of BC patients, but correlated with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. miR-140-3p expression was associated with improved survival irrespective of hormone receptor status. miR-140-3p overexpression induced posttranscriptional downregulation of syndecan-4, as demonstrated by quantitative real-time PCR (qPCR), flow cytometry, and luciferase assays, resulting in decreased BC cell migration and matrigel invasiveness. Furthermore, miR-140-3p overexpression and syndecan-4 silencing increased the adhesion of BC to fibronectin and laminin. qPCR analysis demonstrated that syndecan-4 silencing leads to altered gene expression of adhesion-related molecules, such as fibronectin and focal adhesion kinase, as well as in the gene expression of the proinvasive factors matrix metalloproteinase 2 and heparanase (also known as HPSE). We conclude that syndecan-4 is a novel target of miR-140-3p that regulates BC cell invasiveness and cell-matrix interactions in the tumor microenvironment.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Matriz Extracelular/patologia , MicroRNAs/genética , Sindecana-4/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Adesão Celular , Movimento Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Sindecana-4/genética , Células Tumorais Cultivadas
13.
Cancer Cell Int ; 21(1): 537, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656115

RESUMO

BACKGROUND: Gastric cancer (GC) is a malignant tumor and microRNAs (miRNAs) are closely connected to GC development. The purpose of this study is to investigate the effect of miR-140-3p on the occurrence and metastasis of GC. METHODS: We detected miR-140-3p expression in GC cells and tissues. The correlation between miR-140-3p and prognosis and clinicopathological features in GC was analyzed. The role of miR-140-3p in GC cell migration, invasion, and proliferation was analyzed. The model of tumor transplantation and metastasis in nude mice was established, and the effect of miR-140-3p on the development and metastasis of GC was assessed. The relation between miR-140-3p and SNHG12 and the relations among HuR, SNHG12, and FAM83B were analyzed. RESULTS: miR-140-3p was poorly expressed in GC. GC patients with low miR-140-3p expression had a poor prognosis and unfavorable clinicopathologic features. Overexpression of miR-140-3p inhibited GC cell migration, invasion, and proliferation, and inhibited the development and metastasis of GC. miR-140-3p directly bound to SNHG12 in GC tissues and downregulated SNHG12 expression. SNHG12 overexpression induced HuR nuclear transportation. HuR can bind to FAM83B and up-regulate the mRNA level of FAM83B. Overexpression of SNHG12 or FAM83B reduced the inhibition of overexpression of miR-140-3p on GC. CONCLUSION: miR-140-3p directly bound to SNHG12 in GC and down-regulated the expression of SNHG12, reduced the binding of SNHG12 and HuR, thus inhibiting the nuclear transportation of HuR and the binding of HuR and FAM83B, and reducing the transcription of FAM83B, and finally inhibiting the growth and metastasis of GC.

14.
BMC Cancer ; 21(1): 1004, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496800

RESUMO

BACKGROUND: Dysregulation of long non-coding RNAs (lncRNAs) has been identified in ovarian cancer. However, the expression and biological functions of LINC00852 in ovarian cancer are not understood. METHODS: The expressions of LINC00852, miR-140-3p and AGTR1 mRNA in ovarian cancer tissues and cells were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Gain- and loss-of-function assays were performed to explore the biological functions of LINC00852 and miR-140-3p in the progression of ovarian cancer in vitro. The bindings between LINC00852 and miR-140-3p were confirmed by luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. RESULTS: We found that LINC00852 expression was significantly up-regulated in ovarian cancer tissues and cells, whereas miR-140-3p expression was significantly down-regulated in ovarian cancer tissues. Functionally, LINC00852 knockdown inhibited the viability, proliferation and invasion of ovarian cancer cells, and promoted the apoptosis of ovarian cancer cells. Further investigation showed that LINC00852 interacted with miR-140-3p, and miR-140-3p overexpression suppressed the viability, proliferation and invasion of ovarian cancer cells. In addition, miR-140-3p interacted with AGTR1 and negatively regulated its level in ovarian cancer cells. Mechanistically, we found that LINC00852 acted as a ceRNA of miR-140-3p to promote AGTR1 expression and activate MEK/ERK/STAT3 pathway. Finally, LINC00852 knockdown inhibited the growth and invasion ovarian cancer in vivo. CONCLUSION: LINC00852/miR-140-3p/AGTR1 is an important pathway to promote the proliferation and invasion of ovarian cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Receptor Tipo 1 de Angiotensina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Synapse ; 75(10): e22219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269482

RESUMO

Chronic constriction injury (CCI) of the sciatic nerve was used to establish neuropathic pain (NP) models in rats. CCI rats were then treated with propofol (Pro) and their paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were measured. In addition, the expression patterns of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-10 were detected. CCI rats treated with propofol were further injected with antagomiR-140-3p to verify the role of miR-140-3p in propofol's analgesic actions. In addition to confirming the relationship between miR-140-3p and JAG1, the expression patterns of JAG1 itself were detected. Propofol-treated CCI rats were also injected with Ad-JAG1 (adenovirus-packaged JAG1 overexpression vector and Ad-NC) to test the role of JAG1 in propofol's analgesic mechanism of action. Finally, the levels of JAG1 and Notch pathway-related proteins were detected RESULTS: Propofol was found to alleviate NP, including thermal hyperalgesia and mechanical pain threshold. Propofol could also ameliorate neuroinflammation by up-regulating the expression of IL-10 and inhibiting the release of TNF-α and IL-1ß. Mechanically, propofol enhanced the amount of miR-140-3p in CCI rats via the regulation of JAG1. Down-regulation of miR-140-3p, or up-regulation of JAG1, could reduce the protective effect of propofol against NP. Propofol inhibited the activation of Notch signaling via miR-140-3p/JAG1 to realize its analgesic effect CONCLUSION: Our findings indicated that propofol inhibits inflammatory responses and the Notch signaling pathway via miR-140-3p/JAG1 to alleviate NP. These data provide evidence to support a potential clinical therapy for NP.


Assuntos
MicroRNAs , Neuralgia , Propofol , Animais , Constrição , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteína Jagged-1/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Propofol/farmacologia , Propofol/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
16.
Mol Cell Biochem ; 476(12): 4277-4285, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34406574

RESUMO

Understanding the function and regulatory mechanism of miR-140-3p on the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Alizarin Red staining, Alkaline phosphatase (ALP) staining, and ALP activity were used to detect the ability osteogenic differentiation. miR-140-3p or Spred2 overexpression into BMSCs using lentiviral vectors and the result were analyzed by Reverse transcription quantitative polymerase chain reaction (RT-qPCR). The relation between miR-140-3p and Spred2 was examined by luciferase reporter assay. CCK8 assay was used to detect the proliferation of BMSCs. RT-qPCR and Western blot analysis were both used to detect altered gene and protein in osteogenic differentiation of BMSCs, respectively. The BMSCs which were induced for 21 days were analyzed by Alizarin Red staining, (ALP) staining and ALP activity. RT-qPCR analysis showed that overexpressed miR-140-3p promotes osteogenic differentiation. Western blots results indicated that the overexpression of Spred2 suppressed miR-140-3p. Luciferase reporter assay indicated that Spred2 can integrate with miR-140-3p directly. Meanwhile, the protein level of ALP, OCN, and Runx2, the markers of chondrogenesis, was increased when miR-140-3p increased or Spred2 overexpressed in the osteoinductive medium applied to the BMSCs. Our study demonstrated the association between miR-140-3p and Spred2 in osteogenic differentiation of BMSCs for the first time. Furthermore, our detections also revealed that Spred2-induced autophagic signaling accelerates the progress of osteogenic differentiation ability of BMSCs.


Assuntos
Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese , Proteínas Repressoras/metabolismo , Animais , Autofagia/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Ratos
17.
Biochem Biophys Res Commun ; 525(4): 841-849, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32169278

RESUMO

Circular RNAs (circRNAs) has been shown to be involved in the progression of various malignancies. Nevertheless, the mechanism of dysregulated circRNAs in gastric cancer (GC) remains to be understood. CircRNA microarray was utilized for identifying circRNA expression profiles in GC tissues. Circ-ATAD1 expression was measured by qRT-PCR. The clinical significance of circ-ATAD1 was analyzed by Fisher's exact test, Kaplan-Meier plots, and Cox regression model. The function of circ-ATAD1 was explored by using CCK-8, clone formation, flow cytometric and transwell experiments. RNA sequencing, bioinformatics, RNA pulldown, chromatin immunoprecipitation followed by sequencing, and dual-luciferase reporter assays were applied to determine the regulatory networks of circ-ATAD1 in GC cells. Circ-ATAD1 expression was increased in cancerous tissues. The prognostic value of circ-ATAD1 was identified in GC patients. For GC cells, circ-ATAD1 increased cell progression by sponging miR-140-3p to upregulate YY1. Additionally, YY1 directly bound to the promoter of PCIF1, thereby activating its transcription. Collectively, circ-ATAD1 plays an important role in GC tumorigenesis and progression and might be an important biomarker/therapeutic target for GC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , MicroRNAs/genética , Proteínas Nucleares/genética , RNA Circular/genética , Neoplasias Gástricas/patologia , Fator de Transcrição YY1/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Apoptose/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Fator de Transcrição YY1/metabolismo
18.
RNA Biol ; 17(3): 381-394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31868085

RESUMO

LncRNA ANCR plays important roles in the modulation of epithelial mesenchymal transition (EMT) and tumour metastasis in many tumours. However, the role of ANCR in regulating hepatocellular carcinoma (HCC) metastasis is still not known. The current study aims to investigate the underlying mechanism for tumour oncogenesis of ANCR in HCC metastasis. HCC cell proliferation and migration/invasion were measured by MTT and Transwell assays. Xenograft model was established to determine the effect of ANCR on HCC growth and metastasis. ChIP assay was used to detect the H3 and H4 histone acetylation levels at the ANCR promoter region. RNA pull-down and RIP assay was performed to analyse the relationship between ANCR and heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1). Dual-luciferase reporter gene assay was conducted to determine the interaction between ANCR and miR-140-3p. The results indicated that ANCR was highly expressed in HCC tissues and cells, which promoted the proliferation and migration/invasion of HCC cells. In vivo experiments showed interfering ANCR suppressed the growth and metastasis of HCC. H3/H4 histone acetylation levels at the ANCR promoter region were elevated in HCC tissues and cells, and interfering histone deacetylases 3 (HDAC3) significantly up-regulated ANCR expression. ANCR could bind to HNRNPA1, and promoted the expression of HNRNPA1 through regulating its degradation. In addition, ANCR upregulated the expression of HNRNPA1 through sponging miR-140-3p. Finally, we found that ANCR promoted the EMT and invasion/migration of HCC cells through regulating HNRNPA1. In conclusion, ANCR promoted HCC metastasis by upregulating HNRNPA1, inhibiting HNRNPA1 degradation and sponging miR-140-3p.


Assuntos
Carcinoma Hepatocelular/patologia , Ribonucleoproteína Nuclear Heterogênea A1/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Idoso , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Estabilidade Proteica , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Bioorg Med Chem ; 28(3): 115283, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31902649

RESUMO

Cervical cancer is a critically malignant tumor with the second mortality of females worldwide. MicroRNAs (miRNAs) are short but regulatory non-coding RNAs playing a pivotal role in many biological processes including tumorigenesis. However, the exact role of miR-140-3p in cervical cancer remains to be elucidated. Here we identified that miR-140-3p was significantly reduced in cervical cancer tissues by comprehensive analysis of TCGA data, hinting that higher expression level of miR-140-3p predicted a good clinical prognosis. Quantitative real-time PCR (RT-qPCR) assay was performed to confirm the negative correlation between miR-140-3p expression level and human cervical cancer tissues as well as various cervical cancer cell lines. To clarify the certain role of miR-140-3p, forced expression by microRNA mimics was applied in Caski and C33A cells, showing that miR-140-3p overexpression significantly impeded the proliferation of cervical cancer cells by cell count kit (CCK-8) assay. Western blot analysis of cell cycle-related proteins Cyclin A, Cyclin B1 and Cyclin D1 have further confirmed the cell cycle arrest was induced by the ectopic expression of miR-140-3p. Annexin-V based FACS analysis also found the simultaneous appearance of early apoptotic cell population in miR-140-3p overexpression cells. The protein level of BCL-2 was attenuated in accompany with elevated Bax and Cleaved caspase-3 protein, indicating miR-140-3p overexpression induced early apoptosis. Mechanistically, we demonstrated that miR-140-3p could target the 3'UTR of RRM2 which has been proved to be highly involved in the onset of cancer. Furthermore, upregulation of miR-140-3p and RRM2 failed to inhibit the proliferation of human cervical cancer cells, revealing that RRM2 served as the target downstream gene of miR-140-3p abolishing its ability as a tumor suppressor. Overall, we figured out the new role of miR-140-3p in cervical cancer and concluded that miR-140-3p was a candidate of cancer control in preclinical.


Assuntos
Apoptose , MicroRNAs/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Neoplasias do Colo do Útero/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Feminino , Humanos , MicroRNAs/genética , Ribonucleosídeo Difosfato Redutase/genética , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia
20.
Biotechnol Lett ; 42(11): 2123-2133, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32562135

RESUMO

OBJECTIVES: We evaluated the effects of miR-140-3p on EMT, cellular migration, and invasion in TGF-ß1 treated human OS cells. Human fresh OS tissue and normal bone tissue specimens were gathered from 42 patients (29 male and 13 female, 11 to 24 years of age with a mean age of 17.5 ± 2.3 years) diagnosed with OS by pathology. By targeting TRAF6, miR-140-3p inhibits TGF-ß1-induced human osteosarcoma epithelial-to-mesenchymal transition, migration, and invasion. RESULTS: In this study, we found microRNA (miR)-140-3p to be down-regulated and tumor necrosis factor receptor-associated factor 6 (TRAF6) to be up-regulated in patient OS samples. Lower levels of miR-140-3p and higher levels of TRAF6 were found in the advanced Enneking stage of OS. Furthermore, both mRNA and protein levels of TRAF6 were negatively associated with miR-140-3p mRNA expression in human OS tissue. TRAF6 was verified as a direct target of miR-140-3p in TGF-ß1-treated human U2OS cells. Further, a miR-140-3p mimic dramatically inhibited while a miR-140-3p inhibitor enhanced TGF-ß1-induced epithelial-to-mesenchymal transition, migration, and invasion of U2OS cells. Small interfering RNA was found to silence TRAF6 and to partly reverse the effects of the miR-140-3p inhibitor on TGF-ß1-treated U2OS cells in vitro. CONCLUSION: These results demonstrate miR-140-3p to function as a tumor inhibitor of human OS cells by decreasing TRAF6 expression. miR-140-3p and TRAF6 may be valuable and novel biomarkers for diagnosis and treatment of OS.


Assuntos
Neoplasias Ósseas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , Osteossarcoma/patologia , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Criança , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Invasividade Neoplásica , Estadiamento de Neoplasias , Osteossarcoma/genética , Osteossarcoma/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA