Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 29(9): 2723-2736, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905821

RESUMO

Oxaliplatin resistance is a challenge in the treatment of colorectal cancer (CRC) patients. Regulatory T cells (Tregs) are well known for their immunosuppressive roles, and targeting Tregs is an effective way to improve chemosensitivity. Exosome-delivered microRNA (miRNA) might be used as a potential biomarker for predicting chemosensitivity. However, the relationship between Tregs and exosomal miRNAs remains largely unknown. TaqMan low-density array was performed to screen the differentially expressed serum miRNAs from pooled serum of patients who had FOLFOX treatment. Differential expression was validated using qRT-PCR in individual samples. Exosomes were isolated by sequential differential centrifugation, and they were verified by transmission electron microscopy. The RNA and protein levels were determined by quantitative real-time PCR and western blotting. A mouse xenograft model was adopted to evaluate the correlation between exosome-derived miR-208b and Tregs in vivo. We demonstrated that circulating miR-208b is a non-invasive marker for predicting FOLFOX sensitivity in CRC. miR-208b in colon cancer was secreted by tumor cells in the pattern of exosomes, and oxaliplatin-resistant cells showed the most obvious phenomenon of miR-208b increase. Colon cancer cell-secreted miR-208b was sufficiently delivered into recipient T cells to promote Treg expansion by targeting programmed cell death factor 4 (PDCD4). Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-208b resulted in tumor growth and oxaliplatin resistance. Our results demonstrate that tumor-secreted miR-208b promotes Treg expansion by targeting PDCD4, and it may be related to a decrease of oxaliplatin-based chemosensitivity in CRC. These findings highlight a potential role of exosomal miR-208b as a predictive biomarker for oxaliplatin-based therapy response, and they provide a novel target for immunotherapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Exossomos/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Linfócitos T Reguladores/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Oxaliplatina , Proteínas de Ligação a RNA/metabolismo
2.
RNA Biol ; 17(5): 743-754, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037961

RESUMO

Embryonic and neonatal skeletal muscles grow via the proliferation and fusion of myogenic cells, whereas adult skeletal muscle adapts largely by remodelling pre-existing myofibers and optimizing metabolic balance. It has been reported that miRNAs played key roles during skeletal muscle development through targeting different genes at post-transcriptional level. In this study, we show that a single miRNA (miR-208b) can modulate both the myogenesis and homoeostasis of skeletal muscle by distinct targets. As results, miR-208b accelerates the proliferation and inhibits the differentiation of myogenic cells by targeting the E-protein family member transcription factor 12 (TCF12). Also, miR-208b can stimulate fast-to-slow fibre conversion and oxidative metabolism programme through targeting folliculin interacting protein 1 (FNIP1) but not TCF12 gene. Further, miR-208b could active the AMPK/PGC-1a signalling and mitochondrial biogenesis through targeting FNIP1. Thus, miR-208b could mediate skeletal muscle development and homoeostasis through specifically targeting of TCF12 and FNIP1.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Interferência de RNA , Animais , Diferenciação Celular/genética , Células Cultivadas , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Mioblastos/citologia , Mioblastos/metabolismo , RNA Mensageiro/genética
3.
J Cell Physiol ; 234(4): 3720-3729, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317561

RESUMO

Skeletal muscle is the most abundant tissue in the body. The development of skeletal muscle cell is complex and affected by many factors. A sea of microRNAs (miRNAs) have been identified as critical regulators of myogenesis. MiR-208b, a muscle-specific miRNA, was reported to have a connection with fiber type determination. However, whether miR-208b has effect on proliferation of muscle cell was under ascertained. In our study, cyclin-dependent kinase inhibitor 1A (CDKN1A), which participates in cell cycle regulation, was predicted and then validated as one target gene of miR-208b. We found that overexpression of miR-208b increased the expression of cyclin D1, cyclin E1, and cyclin-dependent kinase 2 at the levels of messenger RNA and protein in cattle primary myoblasts in vivo and in vitro. Flow cytometry showed that forced expression of miR-208b increased the percentage of cells at the S phase and decreased the percentage of cells at the G0/G1 phase. These results indicated that miR-208b participates in the cell cycle regulation of cattle primary myoblast cells. 5-Ethynyl-20-deoxyuridine and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed that overexpression of miR-208b promoted the proliferation of cattle primary myoblasts. Therefore, we conclude that miR-208b participates in the cell cycle and proliferation regulation of cattle primary skeletal muscle cell through the posttranscriptional downregulation of CDKN1A.


Assuntos
Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MicroRNAs/metabolismo , Doenças Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Gatos , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Doenças Musculares/genética , Doenças Musculares/patologia , Mioblastos Esqueléticos/patologia , Processamento Pós-Transcricional do RNA , Transdução de Sinais
4.
J Mol Cell Cardiol ; 121: 173-179, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30025897

RESUMO

Acute myocardial infarction (MI), the most severe type of coronary heart disease, is a leading cause of disability and mortality worldwide. In order to investigate the involvement of miRNAs in the pathologic processes related to MI, we performed the analysis of circulating miRNAs - stable short noncoding RNA molecules - in the peripheral blood plasma of MI patients compared to healthy controls (all persons were men and lived in European Russia) using next generation sequencing. We observed 20 miRNAs, which levels in plasma more than two-fold differed in MI patients (p < 0.05). Among them miR-208b and miR-375 passed threshold for multiple corrections (FC = 49.2, FDR-adjusted p-value = 0.0078 and FC = -6.4, FDR-adjusted p-value = 0.00076, respectively); these data were then validated using RT-qPCR (FC = 5.3, p-value = 0.028 and FC = -2.1, p-value = 0.0039, respectively). While for miR-208b we reidentified earlier observations, miR-375 was found to be associated with MI for the first time. To investigate the reasons for which miR-375 holds a special place among circulating miRNAs in MI, enrichment and network analyses of miR-375 target genes and their interactions were carried out. PIK3CA and TP53 genes, regulated by miR-375, were identified as the key players of MI disease module.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , MicroRNAs/genética , Infarto do Miocárdio/genética , Proteína Supressora de Tumor p53/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/patologia , Federação Russa/epidemiologia
5.
Dev Biol ; 410(1): 1-13, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26708096

RESUMO

Proper muscle function constitutes a precondition for good heath and an active lifestyle during an individual's lifespan and any deviations from normal skeletal muscle development and its functions may lead to numerous health conditions including e.g. myopathies and increased mortality. It is thus not surprising that there is an increasing need for understanding skeletal muscle developmental processes and the associated molecular pathways, especially as such information could find further uses in therapy. The understanding of complex skeletal muscle developmental networks was broadened with the discovery of microRNA (miRNA) molecules. MicroRNAs are evolutionary conserved small non-coding RNAs capable of negatively regulating gene expression on a post-transcriptional level by means of miRNA-mRNA interaction. Several miRNAs expressed exclusively in muscle have been labeled myomiRs. MyomiRs represent an integral part of skeletal muscle development, i.e. playing a significant role during skeletal muscle proliferation, differentiation and regeneration. The purpose of this review is to provide a summary of current knowledge regarding the involvement of myomiRs in the individual phases of myogenesis and other aspects of skeletal muscle biology, along with an up-to-date list of myomiR target genes and their functions in skeletal muscle and miRNA-related therapeutic approaches and future prospects.


Assuntos
MicroRNAs/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/embriologia , Animais , Humanos , Músculo Esquelético/metabolismo
6.
Tumour Biol ; 39(6): 1010428317705751, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28618961

RESUMO

MicroRNAs are widely involved in cancer progression by inhibiting the expression levels of oncogenes or tumor suppressor genes, and dysregulation of microRNAs may contribute to tumorigenesis. Here, we found that overexpressed miR-208b can reduce the proliferation of human osteosarcoma cell lines U-2OS and Saos-2 by arresting cell cycle progression. The in vivo xenograft tumors induced by Saos-2 cells overexpressing miR-208b had smaller size and grew more slowly than those induced by the control cells. The mobility of U-2OS or Saos-2 cells was also downregulated by miR-208b. MiR-208b targeted a site in the 3' untranslated region of receptor tyrosine kinase-like orphan receptor 2. Inhibition of receptor tyrosine kinase-like orphan receptor 2 suppresses osteosarcoma metastasis in vitro. Recovering the expression levels of receptor tyrosine kinase-like orphan receptor 2 in miR-208b-overexpressed U-2OS or Saos-2 cells attenuated the inhibitory effects of miR-208b. In addition, the expression levels of miR-208b are significantly reduced in human osteosarcoma tissue samples compared to normal tissue samples, and miR-208b levels correlated inversely with receptor tyrosine kinase-like orphan receptor 2 levels. On these bases, we identified that miR-208b targets receptor tyrosine kinase-like orphan receptor 2 gene by which miR-208b can regulate the development of osteosarcoma.


Assuntos
Carcinogênese/genética , MicroRNAs/genética , Osteossarcoma/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Osteossarcoma/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética
8.
Front Genet ; 13: 820464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281804

RESUMO

Skeletal muscle, the main source of animal meat products, contains muscle fiber as a key unit. It is well known that transformation takes place between different types of muscle fibers, however, the conversion mechanism is not clear. In a previous study, our lab has demonstrated that there is a decrease in type I muscle fibers and an increase in type IIB muscle fibers in skeletal muscle of myostatin gene-edited Meishan pigs. Very interestingly, we observed the down regulation of miR-208b expression and an increase in expression the predicted target gene Mettl8 (Methyltransferase like 8) in skeletal muscle of MSTN gene-edited Meishan pigs. These results reveal that there is a potential connection between the conversion of skeletal muscle fiber types and miR-208b and Mettl8 expression. In this study, we first explored the expression patterns of miR-208b and Mettl8 in skeletal muscle in Meishan pigs; and then C2C12 cells were used to simulate the development and maturation of muscle fibers. Our results indicated that Myh4 expression level decreased and Myh7 expression level increased following overexpression of miR-208b in C2C12 cells. We therefore speculate that miR-208b can promote the conversion of fast-twitch fibers to slow-twitch fibers. The targeting relationship between Mettl8 and miR-208b was confirmed by results obtained using dual luciferase assay, RT-qPCR, and WB analysis. Following the transfection of Mettl8 siRNA into C2C12 cells, we observed that Mettl8 expression decreased significantly while Myh7 expression increased and Myh4 expression decreased, indicating that Mettl8 promotes the conversion of slow muscle fibers to fast muscle fibers. Additionally, changes in skeletal muscle fiber types are observed in those mice where miR-208b and Mettl8 genes are knocked out. The miR-208b knockout inhibits the formation of slow muscle fibers, and the Mettl8 knockout inhibits the formation of fast muscle fibers. In conclusion, our research results show that miR-208b regulates the conversion of different muscle fiber types by inhibiting Mettl8 expression.

9.
Gen Thorac Cardiovasc Surg ; 70(9): 779-792, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35391605

RESUMO

BACKGROUND: Coronary artery disease (CAD) originates from the blockage of the inner walls of the coronary arteries due to a plaque buildup. Circular RNA (circRNA) circ_0001445 has been reported to be downregulated in patients with a higher coronary atherosclerotic burden. This study is designed to explore the role and mechanism of circ_0001445 on the oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell damage. METHODS: Circ_0001445, microRNA-208b-5p (miR-208b-5p), and ATP-binding cassette sub-family G member 1 (ABCG1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Inflammatory cytokines levels, cell viability, proliferation, migration were detected by Enzyme-linked immunosorbent assay (ELISA) kits, Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. Protein levels were determined by western blot assay. The binding between miR-208b-5p and circ_0001445 or ABCG1 was predicted by circBank or TargetScan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), and RNA pull-down assays. RESULTS: Circ_0001445 and ABCG1 were decreased, and miR-208b-5p was increased in CAD patients and ox-LDL-treated HAECs. Also, circ_0001445 overexpression could weaken ox-LDL-triggered HAEC injury by boosting proliferation, migration, and repressing inflammation and extracellular matrix (ECM). Mechanically, circ_0001445 directly targeted miR-208b-5p. Furthermore, miR-208b-5p mediated the modulation of circ_0001445 in ox-LDL-induced HAEC injury. ABCG1 acted as a direct target of miR-208b-5p, and the downregulation of miR-208b-5p relieved ox-LDL-induced HAEC damage by interacting with ABCG1. Additionally, circ_0001445 regulated ABCG1 expression by sponging miR-208b-5p. CONCLUSION: Circ_0001445 could abate ox-LDL-mediated HAEC damage by the miR-208b-5p/ABCG1 axis, providing a novel insight into the pathogenesis and treatment of CAD.


Assuntos
MicroRNAs , RNA Circular , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética
10.
Biomedicines ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201741

RESUMO

MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among them cardiac hypertrophy and atrial fibrillation. Cardiac miR expression was analyzed in a mouse model with structural and electrical remodeling. Next-generation sequencing revealed that miR-208b-3p was ~25-fold upregulated. Therefore, the aim of our study was to evaluate the impact of miR-208b on cardiac protein expression. First, an undirected approach comparing whole RNA sequencing data to miR-walk 2.0 miR-208b 3'-UTR targets revealed 58 potential targets of miR-208b being regulated. We were able to show that miR-208b mimics bind to the 3' untranslated region (UTR) of voltage-gated calcium channel subunit alpha1 C and Kcnj5, two predicted targets of miR-208b. Additionally, we demonstrated that miR-208b mimics reduce GIRK1/4 channel-dependent thallium ion flux in HL-1 cells. In a second undirected approach we performed mass spectrometry to identify the potential targets of miR-208b. We identified 40 potential targets by comparison to miR-walk 2.0 3'-UTR, 5'-UTR and CDS targets. Among those targets, Rock2 and Ran were upregulated in Western blots of HL-1 cells by miR-208b mimics. In summary, miR-208b targets the mRNAs of proteins involved in the generation of cardiac excitation and propagation, as well as of proteins involved in RNA translocation (Ran) and cardiac hypertrophic response (Rock2).

11.
World J Clin Cases ; 8(16): 3458-3464, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32913852

RESUMO

BACKGROUND: The incidence and prevalence of atrial fibrillation are increasing each year, and this condition is one of the most common clinical arrhythmias. AIM: To investigate the levels and significance of serum fibroblast growth factor 23 (FGF-23) and miR-208b in patients with atrial fibrillation and their relationship with prognosis. METHODS: From May 2018 to October 2019, 240 patients with atrial fibrillation were selected as an observation group, including 134 with paroxysmal atrial fibrillation and 106 with persistent atrial fibrillation; 150 patients with healthy sinus rhythm were selected as a control group. The serum levels of FGF-23 and miR-208b in the two groups were measured. In the observation group, cardiac parameters were determined by echocardiography. RESULTS: The serum levels of FGF-23 and miR-208b in the observation group were 210.20 ± 89.60 ng/mL and 5.30 ± 1.22 ng/mL, which were significantly higher than the corresponding values in the control group (P < 0.05). In the observation group, the serum levels of FGF-23 and miR-208b in patients with persistent atrial fibrillation were 234.22 ± 70.05 ng/mL and 5.83 ± 1.00 ng/mL, which were significantly higher than the corresponding values in patients with paroxysmal atrial fibrillation (P < 0.05). The left atrial dimension (LAD) of patients with persistent atrial fibrillation was 38.81 ± 5.11 mm, which was significantly higher than that of patients with paroxysmal atrial fibrillation (P > 0.05). The serum levels of FGF-23 and miR-208b were positively correlated with the LAD (r = 0.411 and 0.382, P < 0.05). In the observation group, the serum levels of FGF-23 and miR-208b in patients with a major cardiovascular event (MACE) were 243.30 ± 72.29 ng/mL and 6.12 ± 1.12 ng/mL, which were significantly higher than the corresponding values in patients without a MACE (P < 0.05). CONCLUSION: The serum levels of FGF-23 and miR-208b are increased in patients with atrial fibrillation and are related to the type of disease, cardiac parameters, and prognosis.

12.
Biomark Med ; 14(2): 87-95, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789049

RESUMO

Aim: This study aimed to investigate the correlation between the expression of circulating miR-208b and miR-499 and acute coronary syndrome (ACS) patients. Materials & methods: A total of 160 consecutive patients with ACS and 48 healthy control subjects were enrolled for primary analysis. The ACS patients (n = 160) were followed up for 6 months for further analysis regarding major adverse cardiac events. Results: Area under the curve values of miR-208b and miR-499 for predicting ACS were 0.910 and 0.851 (p < 0.001, respectively). Cox proportional hazards regression analysis revealed that miR-208b but not miR-499 was an independent predictor of major adverse cardiac events. Conclusion: Circulating miR-208b and miR-499 could be considered as diagnostic or prognostic biomarkers for patients with ACS.


Assuntos
Síndrome Coronariana Aguda/genética , MicroRNA Circulante/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC
13.
Oncol Lett ; 20(1): 299-307, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565956

RESUMO

Previous studies reported a dysregulation of micro (mi)R-208b-5p expression level in various types of human cancer; however, the role of miR-208-5p in non-small cell lung cancer (NSCLC) remains unclear. Therefore, the present study aimed to determine whether miR-208b-5p could regulate NSCLC progression. A total of 62 pairs of primary tumor and adjacent normal tissues were collected from patients with NSCLC. miR-208b-5p expression level was determined by reverse transcription-quantitative polymerase chain reaction. Furthermore, miR-208b-5p mimics was transfected into NSCLC A549 and H1299 cells in order to upregulate miR-208b-5p expression. Dual-luciferase reporter assay was utilized to investigate the associations between miR-208b-5p and IL9 mRNA. The results demonstrated that miR-208b-5p expression decreased in NSCLC tissues and cell lines. Furthermore, miR-208b-5p overexpression inhibited A549 and H1299 cell proliferation and invasiveness. miR-208b-5p was demonstrated to bind directly to the 3' untranslated region of interleukin-9 (IL-9) and therefore decreased its expression. In the NSCLC-derived cell lines, miR-208b-5p inactivated IL-9/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Furthermore, enhanced IL-9 level decreased the miR-208b-5p-mediated suppression of epithelial-mesenchymal transition in NSCLC cells by inactivating the STAT3 signaling pathway. In conclusion, the findings from this study demonstrated that miR-208b-5p inhibited migration and invasion of NSCLC cells. The anti-tumor activity of miR-208b-5p may be mediated by IL-9 and STAT-3 pathway.

14.
Front Genet ; 11: 149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194626

RESUMO

BACKGROUND: Schizophrenia risk genes are widely investigated, but a systemic analysis of miRNAs contributing to schizophrenia is lacking. METHODS: Schizophrenia-associated genetic loci profiles were derived from a genome-wide association study (GWAS) from the Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC) dataset. Experimentally confirmed relationships between miRNAs and their target genes were retrieved from a miRTarBase. A competitive gene set association analysis for miRNA-target regulations was conducted by the Multi-marker Analysis of GenoMic Annotation (MAGMA) and further validated by literature-based functional pathway analysis using Pathway Studio. The association between the targets of three miRNAs and schizophrenia was further validated using a GWAS of antipsychotic treatment responses. RESULTS: Three novel schizophrenia-risk miRNAs, namely, miR-208b-3p, miR-208a-3p, and miR-494-5p, and their targetomes converged on calcium voltage-gated channel subunit alpha1 C (CACNA1C) and B-cell lymphoma 2 (BCL2), and these are well-known contributors to schizophrenia. Both miR-208a-3p and miR-208b-3p reduced the expression of the RNA-binding protein Quaking (QKI), whose suppression commonly contributes to demyelination of the neurons and to ischemia/reperfusion injury. On the other hand, both QKI and hsa-miR-494-5p were involved in gliomagenesis. CONCLUSION: Presented results point at an orchestrating role of miRNAs in the pathophysiology of schizophrenia. The sharing of regulatory networks between schizophrenia and other pathologies may explain higher cardiovascular mortality and lower odds of glioma previously reported in psychiatric patients.

15.
Biomed Pharmacother ; 125: 110001, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32070878

RESUMO

Dexmedetomidine (Dex) has been reported to be cardioprotective. Differential expression of miR-208b-3p is associated with myocardial injury. But it is unknown that aberrant expression of miR-208b-3p is implicated in myocardial protection of Dex. Hypoxia/reoxygenation (HR) model was established in H9C2 cells. qRT-PCR was performed to detect expression levels of miR-208b-3p in H9C2 undergoing HR, Dex preconditioning, overexpression of miR-208b-3p or inhibition, and to assess expression of Med13 in H9C2 following knockdown of Med13 mRNA. CCK8 and, flow cytometry and Western blot were conducted respectively to examine viability, apoptosis rate and protein expressions of H9C2 subjected to a variety of treatments. Dex preconditioning reduced expression of miR-208b-3p and apoptosis of H9C2 cells caused by HR, while Dex preconditioning increased viability of H9C2. Dex preconditioning increased expression of Med13, which was reduced after knockdown of Med13 mRNA in H9C2. Overexpression of miR-208b-3p attenuated Dex exerted protective effects of myocardial cells, which was reversed by inhibition of miR-208b-3p. Increased expression of Med13 or/and decreased expression of miR-208b-3p decreased expression levels of Wnt/ß-catenin signaling pathway-related proteins (Wnt3a, Wnt5a and ß-catenin), while knockdown of Med13 mRNA or increased expression of miR-208b-3p increased the expression levels of those proteins. Dex protects H9C2 cells against HR injury through miR-208b-3p/Med13/Wnt/ß-catenin signaling pathway axis.


Assuntos
Dexmedetomidina/farmacologia , Complexo Mediador/genética , MicroRNAs/genética , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia
16.
Biomed Pharmacother ; 106: 1751-1759, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30119250

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Concerns were raised about the background pattern of the Western Blots from Figures 3D and 5A. Given the comments of Dr Elisabeth Bik regarding this article "This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels", the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.


Assuntos
Apoptose , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Estudos de Casos e Controles , Hipóxia Celular , Microambiente Celular , Citocromos c/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Proteína X Associada a bcl-2/genética
17.
J Am Soc Hypertens ; 9(10): 802-810, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358152

RESUMO

MicroRNAs regulate several aspects of physiological and pathologic cardiac hypertrophy, and they represent promising therapeutic targets in cardiovascular disease. We assessed the expression levels of the microRNAs miR-1, miR-133a, miR-26b, miR-208b, miR-499, and miR-21, in 102 patients with essential hypertension and 30 healthy individuals. All patients underwent two-dimensional echocardiography. MicroRNA expression levels in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Hypertensive patients showed significantly lower miR-133a (5.06 ± 0.50 vs. 13.20 ± 2.15, P < .001) and miR-26b (6.76 ± 0.53 vs. 9.36 ± 1.40, P = .037) and higher miR-1 (25.99 ± 3.07 vs. 12.28 ± 2.06, P = .019), miR-208b (22.29 ± 2.96 vs. 8.73 ± 1.59, P = .016), miR-499 (10.06 ± 1.05 vs. 5.70 ± 0.91, P = .033), and miR-21 (2.75 ± 0.15 vs. 1.82 ± 0.20, P = .002) expression levels compared with healthy controls. In hypertensive patients, we observed significant negative correlations of miR-1 (r = -0.374, P < .001) and miR-133a (r = -0.431, P < .001) and significant positive correlations of miR-26b (r = 0.302, P = .002), miR-208b (r = 0.426, P < .001), miR-499 (r = 0.433, P < .001) and miR-21 (r = 0.498, P < .001) expression levels with left ventricular mass index. Our data reveal that miR-1, miR-133a, miR-26b, miR-208b, miR-499, and miR-21 show distinct expression profiles in hypertensive patients relative to healthy individuals and they are associated with clinical indices of left ventricular hypertrophy in hypertensive patients. Thus, they may be related to heart hypertrophy in hypertensive patients and are possibly candidate therapeutic targets in hypertensive heart disease.


Assuntos
Perfilação da Expressão Gênica , Hipertensão/sangue , Hipertrofia Ventricular Esquerda/sangue , MicroRNAs/sangue , Idoso , Biomarcadores/sangue , Hipertensão Essencial , Feminino , Humanos , Hipertensão/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA