Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 67, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317146

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading aging related cause of global mortality. Small airway narrowing is recognized as an early and significant factor for COPD development. Senescent fibroblasts were observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition and senescence-associated secretory phenotype (SASP). On the basis of our previous study, we further investigated the the causes for the increased levels of miR-377-3p in the blood of COPD patients, as well as its regulatory function in the pathological progression of COPD. We found that the majority of up-regulated miR-377-3p was localized in lung fibroblasts. Inhibition of miR-377-3p improved chronic smoking-induced COPD in mice. Mechanistically, miR-377-3p promoted senescence of lung fibroblasts, while knockdown of miR-377-3p attenuated bleomycin-induced senescence in lung fibroblasts. We also identified ZFP36L1 as a direct target for miR-377-3p that likely mediated its pro senescence activity in lung fibroblasts. Our data reveal that miR-377-3p is crucial for COPD pathogenesis, and may serve as a potential target for COPD therapy.


Assuntos
Fator 1 de Resposta a Butirato , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Envelhecimento , Fator 1 de Resposta a Butirato/metabolismo , Senescência Celular/genética , Fibroblastos/metabolismo , Pulmão/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
2.
BMC Cardiovasc Disord ; 24(1): 19, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172743

RESUMO

BACKGROUND: The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS: An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RT‒qPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS: Myocardial ischemia‒reperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION: LncRNA KCNQ1OT1 aggravates ischemia‒reperfusion-induced cardiac injury via miR-377-3P/HMOX1.


Assuntos
MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Humanos , Apoptose , Heme Oxigenase-1/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Environ Toxicol ; 39(1): 421-434, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792549

RESUMO

Papillary thyroid cancer (PTC) is a prevalent malignancy worldwide. Spleen tyrosine kinase (SYK) is a crucial enzyme that participates in various biological processes, including cancer progression. This study aims to uncover the biological function of SYK in PTC. SYK expression patterns in PTC were evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and western blot. Cell function assays were performed to assess the effects of SYK on PTC. Bioinformatics analysis was conducted to identify intriguing microRNA (miRNA) and circular RNA (circRNA). Dual-Luciferase Reporter or RNA immunoprecipitation assays were used to investigate the correlation among SYK, miR-377-3p, and hsa_circ_0006417. SYK was upregulated in PTC. Overexpression of SYK exhibited a positive correlation with tumor size, lymph node metastasis, and unfavorable disease-free survival. Functional assays revealed that SYK exerted tumorigenic effect on PTC cells through mTOR/4E-BP1 pathway. Mechanistically, hsa_circ_0006417 and miR-377-3p regulated SYK expression, offering modulating its tumor-promoting effects. Collectively, SYK acts as an oncogene in PTC through mTOR/4E-BP1 pathway, which is regulated by the hsa_circ_0006417/miR-377-3p axis, thereby providing a potential alternative for PTC treatment.


Assuntos
MicroRNAs , RNA Circular , Quinase Syk , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Quinase Syk/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Serina-Treonina Quinases TOR , RNA Circular/genética
4.
Biochem Genet ; 61(4): 1625-1644, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36719624

RESUMO

CircRNAs are implicated in the development of several cancers. Nevertheless, the involvement of circ_0000118 in the development of cervical cancer (CC) remains unclear. Circ_0000118 levels in tumor tissues and cells were examined by qRT-PCR. The function of circ_0000118 in regulating the malignancy of CC cells was investigated using functional assays, including CCK-8, colony formation, transwell, and tube formation experiments. The functional interaction between circ_0000118 and microRNAs were validated by dual-luciferase activity assay and RNA precipitation experiments. In vivo mouse model was employed to assess the effect of circ_0000118 in the tumorigenesis of CC cells. Circ_0000118 was overexpressed in CC cells and tissues. Loss-of-function experiments demonstrated that circ_0000118 knockdown impaired the proliferation and tumor sphere formation, as well as the angiogenic potential of CC cells. RNA interaction experiments confirmed that circ_0000118 sponged miR-211-5p and miR-377-3p. AKT2 was found to be a target gene negatively modulated by miR-211-5p and miR-377-3p. AKT2 overexpression rescued the inhibition of circ_0000118 downregulation on CC cells. Our study suggested that circ_0000118 functions as an oncogenic factor in progression of CC by maintaining AKT2 level through targeting miR-211-5p and miR-377-3p as a ceRNA (competitive endogenous RNA), which provides novel therapeutic target in the management of CC.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , RNA Circular , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Circular/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
5.
Mol Cancer ; 21(1): 123, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668527

RESUMO

BACKGROUND: Multiple lines of evidence have demonstrated that circular RNAs (circRNAs) play oncogenic or tumor-suppressive roles in various human cancers. Nevertheless, the biological functions of circRNAs in small cell lung cancer (SCLC) are still elusive. METHODS: CircVAPA (annotated as hsa_circ_0006990) was identified by mining the circRNA profiling dataset of six paired SCLC tissues and the RNA-seq data of serum samples from 36 SCLC patients and 118 healthy controls. The circVAPA expression level was evaluated using quantitative real-time PCR in SCLC cells and tissues. Cell viability, colony formation, cell cycle and apoptosis analysis assays and in vivo tumorigenesis were used to reveal the biological roles of circVAPA. The underlying mechanism of circVAPA was investigated by Western blot, RNA pulldown, RNA immunoprecipitation, dual-luciferase reporter assay and rescue experiments. RESULTS: We revealed that circVAPA, derived from exons 2-4 of the vesicle-associated membrane protein-associated protein A (VAPA) gene, exhibited higher expression levels in SCLC cell lines, clinical tissues, and serum from SCLC patients than the controls, and facilitated SCLC progression in vitro and in vivo. Mechanistically, circVAPA activated the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway by modulating the miR-377-3p and miR-494-3p/insulin-like growth factor 1 receptor (IGF1R) axis to accelerate SCLC progression. Furthermore, circVAPA depletion markedly enhanced the inhibitory effects of BMS-536924, an IGF1R kinase inhibitor in cellular and xenograft mouse models. CONCLUSIONS: CircVAPA promotes SCLC progression via the miR-377-3p and miR-494-3p/IGF1R/AKT axis. We hope to develop clinical protocols of combinations of circVAPA inhibition and BMS-536924 addition for treating SCLC with circVAPA upregulation.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Carcinoma de Pequenas Células do Pulmão , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética , Receptor IGF Tipo 1/genética , Carcinoma de Pequenas Células do Pulmão/genética
6.
Future Oncol ; 18(7): 793-805, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34854318

RESUMO

Aim: This study aimed to identify specific and sensitive exosomal miRNAs in diagnosing patients with colorectal cancer (CRC). Methods: Serum exosomes were isolated from 175 CRC patients and 172 healthy donors by ultracentrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting. Exosomal miRNA expression was detected by quantitative PCR and the results analyzed by receiver operating characteristic analysis to illuminate the diagnostic accuracy. Results: Both exosomal miR-377-3p and miR-381-3p were downregulated in CRC patients as well as in early-stage patients compared with healthy donors; they could serve as circulating biomarkers of diagnosis, including early diagnosis, for CRC, possessing favorable diagnostic efficiency. Conclusion: Exosomal miR-377-3p and miR-381-3p levels were downregulated in CRC patients and may be useful as novel and specific biomarkers for the diagnosis of CRC, especially early-stage CRC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Exossomos/metabolismo , MicroRNAs/metabolismo , Idoso , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Neoplasias Colorretais/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
7.
Biochem Genet ; 60(4): 1380-1401, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35039981

RESUMO

Neuroblastoma is a malignant tumor originating from the primitive neural crest. Circular RNA (circRNA) Kinesin Superfamily Protein 2A (circKIF2A, also known as hsa_circ_0129276) has been reported to be upregulated in neuroblastoma. However, the molecular mechanism of circKIF2A participated in neuroblastoma is poorly defined. We analyzed the expression levels of circKIF2A, microRNA-377-3p (miR-377-3p), and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) in neuroblastoma tissues and cell lines (SK-N-AS and LAN-6) and explored their roles. The expression levels of CircKIF2A and PRPS1 were increased and that of miR-377-3p were decreased in 21 neuroblastoma tissues and cells. Functionally, the silencing of circKIF2A inhibited cell proliferation, migration, invasion, and glycolysis, boosted apoptosis in neuroblastoma cells in vitro, and blocked the growth of subcutaneously transplanted tumors in nude mice. Mechanically, circKIF2A could work as a sponge of miR-377-3p to enhance PRPS1 expression. CircKIF2A knockdown impedes cell proliferation, metastasis, and glycolysis partly by regulating the miR-377-3p/PRPS1 axis, suggesting that targeting circKIF2A can be a feasible therapeutic strategy for neuroblastoma.


Assuntos
MicroRNAs , Neuroblastoma , RNA Circular , Ribose-Fosfato Pirofosfoquinase , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neuroblastoma/genética , RNA Circular/genética , Ribose-Fosfato Pirofosfoquinase/genética
8.
Microb Pathog ; 150: 104674, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271233

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. After a thorough investigation, the Editor has concluded that the acceptance of this article was partly based upon the positive advice of one illegitimate reviewer report. The report was submitted from an email account which was provided to the journal as a suggested reviewer during the submission of the article. Although purportedly a real reviewer account, the Editor has concluded that this was not of an appropriate, independent reviewer. This manipulation of the peer-review process represents a clear violation of the fundamentals of peer review, our publishing policies, and publishing ethics standards. Apologies are offered to the reviewer whose identity was assumed and to the readers of the journal that this deception was not detected during the submission process.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , RNA Longo não Codificante , Humanos , Macrófagos , MicroRNAs/genética , Mycobacterium tuberculosis/genética , Estudos Prospectivos , RNA Longo não Codificante/genética
9.
J Cell Physiol ; 235(2): 1733-1745, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31317555

RESUMO

In the last decade, circular RNAs (circRNAs) emerge as important regulators in multiple biological processes. Lately, it is reported hsa_circRNA_103809 could play vital parts in several types of cancers. Based on the analysis of GEO data (GSE97332), hsa_circRNA_103809 was found to be dysregulated in hepatocellular carcinoma (HCC). However, the biological function and underlying regulatory mechanisms of hsa_circRNA_103809 in HCC remain unclear. Our results suggested that hsa_circRNA_103809 was overexpressed in HCC patients, and hsa_circRNA_103809 knockdown remarkably inhibited the proliferation, cycle progression, and migration of HCC cells. The investigations of molecular showed that hsa_circRNA_103809 could elevate the protein expression of a miR-377-3p target, fibroblast growth factor receptor 1 (FGFR1), through interacting with miR-377-3p and decreasing its expression level. Additionally, in vivo assays revealed hsa_circRNA_103809 short hairpin RNA served as a tumor suppressor through downregulating FGFR1 in HCC. This study systematically investigated novel regulatory signaling of hsa_circRNA_103809/miR-377-3p/FGFR1 axis, providing insights into hepatocellular carcinoma treatment from bench to clinic.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/patologia , RNA Circular/genética , Transdução de Sinais/genética , Adulto , Idoso , Animais , Carcinoma Hepatocelular/genética , Feminino , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
10.
Biochem Biophys Res Commun ; 523(1): 46-53, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31831175

RESUMO

Increasing evidence indicates that altered expression of microRNAs (miRNAs) is associated with osteoarthritis (OA) progression. In our study, we demonstrated that miR-377-3p is underexpressed in OA-affected cartilage and IL-1ß-treated chondrocytes. Overexpression of miR-377-3p enhanced chondrocyte proliferation and restrained apoptosis and signs of cartilage matrix degradation and of an inflammatory response. Furthermore, ITGA6 was identified as a target gene of miR-377-3p. The latter was found to directly bind to the 3' untranslated region (3'UTR) of ITGA6 mRNA and downregulate ITGA6. In addition, ITGA6 expression was high in OA-affected tissues and negatively correlated with miR-77-3p expression. Overexpression of ITGA6 reversed the effects of miR-377-3p on IL-1ß-caused chondrocyte apoptosis, cartilage matrix degradation, and the inflammatory response. Moreover, bioinformatic analysis and a luciferase assay indicated that miR-377-3p expression is regulated by long noncoding RNA NEAT1, which binds to miR-377-3p and inactivates it. We showed that NEAT1 was highly expressed in OA-affected cartilage, negatively correlated with miR-377-3p levels, and positively correlated with ITGA6 levels. These findings provide information for the development of future treatments of OA, suggesting that miR-377-3p may be a therapeutic target in OA.


Assuntos
Cartilagem/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Integrina alfa6/metabolismo , Interleucina-1beta/antagonistas & inibidores , MicroRNAs/farmacologia , Osteoartrite/tratamento farmacológico , Apoptose/efeitos dos fármacos , Cartilagem/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Humanos , Integrina alfa6/genética , Interleucina-1beta/metabolismo , MicroRNAs/genética , Osteoartrite/metabolismo
11.
Cancer Cell Int ; 20: 247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550825

RESUMO

BACKGROUND: Circular RNAs (circRNAs), a subgroup of non-coding RNAs, are recognized as pivotal mediators in various types of cancers. CircRNA_0000284 (circ_0000284) was manifested to participate in the development of non-small cell lung cancer (NSCLC). The novel functional mechanism of circ_0000284 in NSCLC was investigated in our current study. METHODS: We exploited quantitative real-time polymerase chain reaction (qRT-PCR) to analyze the relative RNA (circRNA, miRNA and mRNA) expression. The assessment of cell proliferation and colony formation was executed by Cell Counting Kit-8 (CCK-8) and colony formation assay, respectively. Transwell assay was implemented to examine cell migration and invasion. All protein levels were assayed using western blot. The role of circ_0000284 in vivo was evaluated via xenograft model. The target relation was estimated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS: As for the biological characterization, circ_0000284 was highly stable and localized in the cytoplasm. Circ_0000284 was up-regulated in NSCLC and could predict poor prognosis of NSCLC patients. Both in vitro and in vivo, down-regulation of circ_0000284 refrained tumorigenesis of NSCLC. Besides, microRNA-377-3p (miR-377-3p) was a miRNA target of circ_0000284, and targeted programmed death-ligand 1 (PD-L1). Circ_0000284 was a cancer-promoting circRNA in NSCLC via regulating the miR-377-3p/PD-L1 axis. CONCLUSION: Thus, our results unraveled that circ_0000284 facilitated the progression of NSCLC by up-regulating the PD-L1 expression as a competing endogenous RNA (ceRNA) of miR-377, possibly developing a different perspective in understanding the molecular pathogenesis of NSCLC.

12.
BMC Cancer ; 20(1): 1190, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276753

RESUMO

BACKGROUND: Cisplatin is the first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC), and emerging evidences suggests that targeting circular RNAs (circRNAs) is an effective strategy to increase cisplatin-sensitivity in NSCLC, but the detailed mechanisms are still not fully delineated. METHODS: Cell proliferation, viability and apoptosis were examined by using the cell counting kit-8 (CCK-8) assay, trypan blue staining assay and Annexin V-FITC/PI double staining assay, respectively. The expression levels of cancer associated genes were measured by using the Real-Time qPCR and Western Blot analysis at transcriptional and translated levels. Dual-luciferase reporter gene system assay was conducted to validated the targeting sites among hsa_circRNA_103809, miR-377-3p and 3' untranslated region (3'UTR) of GOT1 mRNA. The expression status, including expression levels and localization, were determined by immunohistochemistry (IHC) assay in mice tumor tissues. RESULTS: Here we identified a novel hsa_circRNA_103809/miR-377-3p/GOT1 signaling cascade which contributes to cisplatin-resistance in NSCLC in vitro and in vivo. Mechanistically, parental cisplatin-sensitive NSCLC (CS-NSCLC) cells were subjected to continuous low-dose cisplatin treatment to generate cisplatin-resistant NSCLC (CR-NSCLC) cells, and we found that hsa_circRNA_103809 and GOT1 were upregulated, while miR-377-3p was downregulated in CR-NSCLC cells but not in CS-NSCLC cells. In addition, hsa_circRNA_103809 sponged miR-337-3p to upregulate GOT1 in CS-NSCLC cells, and knock-down of hsa_circRNA_103809 enhanced the inhibiting effects of cisplatin on cell proliferation and viability, and induced cell apoptosis in CR-NSCLC cells, which were reversed by downregulating miR-377-3p and overexpressing GOT1. Consistently, overexpression of hsa_circRNA_103809 increased cisplatin-resistance in CS-NSCLC cells by regulating the miR-377-3p/GOT1 axis. Finally, silencing of hsa_circRNA_103809 aggravated the inhibiting effects of cisplatin treatment on NSCLC cell growth in vivo. CONCLUSIONS: Analysis of data suggested that targeting the hsa_circRNA_103809/miR-377-3p/GOT1 pathway increased susceptibility of CR-NSCLC cells to cisplatin, and this study provided novel targets to improve the therapeutic efficacy of cisplatin for NSCLC treatment in clinic.


Assuntos
Aspartato Aminotransferase Citoplasmática/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/fisiologia , Proteínas de Neoplasias/fisiologia , RNA Circular/fisiologia , RNA Neoplásico/fisiologia , Regiões 3' não Traduzidas , Animais , Apoptose , Aspartato Aminotransferase Citoplasmática/genética , Divisão Celular , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Vetores Genéticos/farmacologia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Circular/antagonistas & inibidores , RNA Circular/genética , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Pharmacol Res ; 156: 104774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220639

RESUMO

Aberrant activation of Wnt/ß-catenin signaling is a common event in the development of colorectal cancer (CRC). It is important to identify new molecules and mechanisms that can negatively regulate Wnt/ß-catenin signaling. MicroRNAs are considered as promising candidates for cancer diagnosis and therapy. In our study, we found that miR-377-3p was significantly decreased in CRC samples compared to the normal mucosa tissues, especially in the patients at stage III/IV. Functional studies showed that overexpression of miR-377-3p suppressed and silence of miR-377-3p enhanced the proliferation, migration and chemoresistance of CRC cells. Molecularly, miR-377-3p inhibited Wnt/ß-catenin signaling by directly targeting ZEB2 and XIAP, which were the positive regulators of Wnt/ß-catenin signaling. Overexpression of ZEB2/XIAP could counteract the tumor suppressing phenotypes induced by miR-377-3p. Therefore, we uncovered the anti-cancer role and the relevant mechanisms of miR-377-3p in CRC, which might provide novel targets for designing new anti-tumor strategies.


Assuntos
Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Via de Sinalização Wnt , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Carga Tumoral , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
14.
J Cell Physiol ; 234(12): 23667-23674, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31188482

RESUMO

Up to date, the mechanism of gastric cancer (GC) development is poorly understood. This study was to demonstrate the effects of LINC00339 on GC progression. Here, we found that LINC00339 was overexpressed expressed in GC tissues and predicted poor outcome. By CCK8, colony formation and Transwell assays, we showed LINC00339 knockdown suppressed GC cell proliferation, migration, and invasion in vitro. Flow cytometry analysis (FACS) indicated that LINC00339 knockdown induced tumor cell apoptosis. Besides, we utilized the xenograft assay and found that LINC00339 depletion led to decreased tumor growth in vivo. Mechanistically, miR-377-3p was found to be inhibited by LINC00339. And LINC00339 suppressed miR-377-3p to upregulate DCP1A, which consequently promoted GC progression. In conclusion, LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p.


Assuntos
Endorribonucleases/biossíntese , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Transativadores/biossíntese , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Humanos , Invasividade Neoplásica/genética , Transplante de Neoplasias , Oncogenes/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias Gástricas/genética , Transplante Heterólogo
15.
J Cell Physiol ; 234(8): 13303-13317, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30618083

RESUMO

Recently, long noncoding RNAs (lncRNAs) have become the key gene regulators and prognostic biomarkers in various cancers. Through microarray data, Linc00339 was identified as a candidate oncogenic lncRNA. We compared the expression levels of Linc00339 in several breast cancer cell lines and normal mammary gland epithelial cell line. The effects of Linc00339 on tumor progression were examined both in vitro and in vivo. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were applied to evaluate the functions of Linc00339, miR-377-3p, and HOXC6 on cell proliferation. Flow cytometry analysis was used to detect apoptosis and cell cycle distribution. Overall survival (OS) was analyzed using data from The Cancer Genome Atlas and molecular taxonomy of breast cancer international consortium (METABRIC). Dual luciferase assay and RNA immunoprecipitation were performed to confirm the interaction between Linc003339 and miR-377-3p. Linc00339 was increased in breast cancer cell lines compared with the normal epithelial cell. Through in vitro and in vivo experiments, Linc00339 overexpression promoted triple-negative breast cancer (TNBC) proliferation, inhibited cell cycle arrest, and suppressed apoptosis. Silencing of Linc00339 obtained the opposite effects. Mechanistic investigations demonstrated that Linc00339 could sponge miR-377-3p and regulate its expression. Higher expression of miR-377-3p indicated longer OS in breast cancer patients, especially in TNBC patients. Overexpression of miR-377-3p retarded TNBC cell growth through regulating cell cycle distribution and apoptosis. And miR-377-3p was involved in Linc00339-mediated TNBC proliferation through regulating HOXC6 expression. Knockdown of HOXC6 inhibited TNBC progression. In conclusion, our results illuminated that the novel Linc00339/miR-377-3p/HOXC6 axis played a critical role in TNBC progression and might be a promising therapeutic target for TNBC treatment.


Assuntos
Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Interferência de RNA
16.
J Cell Biochem ; 119(2): 2124-2134, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857252

RESUMO

MicroRNA (miRNA) dysregulation has been associated with carcinogenesis in many cancers, including human colorectal cancer (hCRC). However, the effect and mechanism of miR-377-3p on CRC remains elusive. Herein, we first found that miR-377-3p was upregulated in CRC tissues and promoted tumorigenic activity by accelerating the G1 -S phase transition, promoting cell proliferation and epithelial-mesenchymal transition (EMT) while repressing apoptosis in CRC cells. Glycogen synthase kinase-3ß (GSK-3ß) was a direct target of miR-377-3p, and upregulated by miR-377-3p. Knockdown of GSK-3ß partly rescued miR-377-3p-mediated malignancy characteristics. Most importantly, we showed that miR-377-3p promoted carcinogenesis by activating NF-κB pathway. Taken together, our results first reported that miR-377-3p functions as an oncogene and promotes carcinogenesis via upregulating GSK-3ß expression and activating NF-κB pathway in hCRC cells.


Assuntos
Neoplasias Colorretais/genética , Glicogênio Sintase Quinase 3 beta/genética , MicroRNAs/genética , Transdução de Sinais , Regulação para Cima , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , NF-kappa B/genética , Transplante de Neoplasias
17.
Mol Cell Biochem ; 449(1-2): 295-303, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29959592

RESUMO

MicroRNAs are members of the family of non-coding small RNAs that regulate gene expression either by inhibiting mRNA translation or by promoting mRNA degradation at the post-transcriptional level. They play an important role in the differentiation of human bone marrow mesenchymal stem cells (hMSCs) into adipocytes. However, the role of microRNAs in this process remains to be poorly understood. Here, we observed that miR-377-3p expression was markedly decreased during adipogenic differentiation of hMSCs. Overexpression of miR-377-3p decreased adipocyte differentiation and downregulated the expression of adipogenic markers. Meanwhile, bioinformatics-based studies suggested that LIFR is a target of miR-377-3p. Further analysis confirmed that expression of LIFR present markedly increased during adipogenic differentiation of hMSCs. In addition, downregulation expression of LIFR significantly inhibited the process of adipocyte differentiation. To confirm the relation between miR-377-3p and LIFR, luciferase reporter assays were carried out. The results indicated that miR-377-3p bound directly to the 3'-untranslated region of LIFR. These data indicate that miR-377-3p suppressed adipogenesis of hMSCs by targeting LIFR, which provides novel insights into the molecular mechanism of miRNA-mediated cellular differentiation.


Assuntos
Adipogenia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/biossíntese , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Células da Medula Óssea/citologia , Linhagem Celular , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética
18.
Mol Neurobiol ; 61(4): 1920-1935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37817032

RESUMO

Prenatal hypoxia (PH) is one of the most common complications of obstetrics and is closely associated with many neurological disorders such as depression, anxiety, and cognitive impairment. Our previous study found that Zfp462 heterozygous (Het) mice exhibit significant anxiety-like behavior. Interestingly, offspring mice with PH also have anxiety-like behaviors in adulthood, accompanied by reduced expression of Zfp462 and increased expression of miR-377-3p; however, the exact regulatory mechanisms remain unclear. In this study, western blotting, gene knockdown, immunofluorescence, dual-luciferase reporter assay, immunoprecipitation, cell transfection with miR-377-3p mimics or inhibitors, quantitative real-time PCR, and rescue assay were used to detect changes in the miR-377-3p-Zfp462-Pbx1 (pre-B-cell leukemia homeobox1) pathway in the brains of prenatal hypoxic offspring to explain the pathogenesis of anxiety-like behaviors. We found that Zfp462 deficiency promoted Pbx1 protein degradation through ubiquitination and that Zfp462 Het mice showed downregulation of the protein kinase B (PKB, also called Akt)-glycogen synthase kinase-3ß (GSK3ß)-cAMP response element-binding protein (CREB) pathway and hippocampal neurogenesis with anxiety-like behavior. In addition, PH mice exhibited upregulation of miR-377-3p, downregulation of Zfp462/Pbx1-Akt-GSK3ß-CREB pathway activity, reduced hippocampal neurogenesis, and an anxiety-like phenotype. Intriguingly, miR-377-3p directly targets the 3'UTR of Zfp462 mRNA to regulate Zfp462 expression. Importantly, microinjection of miR-377-3p antagomir into the hippocampal dentate gyrus of PH mice upregulated Zfp462/Pbx1-Akt-GSK3ß-CREB pathway activity, increased hippocampal neurogenesis, and improved anxiety-like behaviors. Collectively, our findings demonstrated a crucial role for miR-377-3p in the regulation of hippocampal neurogenesis and anxiety-like behaviors via the Zfp462/Pbx1-Akt-GSK3ß-CREB pathway. Therefore, miR-377-3p could be a potential therapeutic target for anxiety-like behavior in prenatal hypoxic offspring.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Ansiedade , Proteínas de Ligação a DNA/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Sci Total Environ ; 948: 174979, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053546

RESUMO

Microcystin-leucine arginine (MC-LR) has been reported to exhibit placental toxicity, leading to potential adverse pregnancy outcomes. Placental abnormalities often coincide with congenital heart defects (CHD). However, the extent to which MC-LR-induced placental abnormalities contribute to CHD and the cellular mechanisms underlying this association remain unknown. In this study, we observed abnormal polarization of placental macrophages in pregnant mice exposed to MC-LR during pregnancy, and the embryos developed cardiac developmental defects that persisted into adulthood. Trophoblast-derived extracellular vesicles (T-EVs) increase in number during pregnancy and act as a critical signal in macrophage polarization. However, MC-LR significantly affected the miRNA expression profile of T-EVs. Upon internalization into macrophages, T-EV-derived miR-377-3p specifically targets the 3'UTR region of NR6A1 to inhibit gene expression. Silencing of transcription suppressor NR6A1 leads to abnormal activation of the downstream mTOR/S6K1/SREBP pathway, inducing metabolic reprogramming and ultimately leading to M1 polarization of macrophages. This study elucidated the placental mechanism underlying MC-LR-induced CHD for the first time, providing insights into the environmental risks associated with CHD.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38497563

RESUMO

In recent years, investigations have revealed that microRNAs (miRNAs) can bind together and form a miRNA-miRNA-mRNA regulatory network that alters the consequence of miRNA-mRNA interaction. If we consider the miRNA that binds to mRNA as the primary miRNA and the miRNA that binds to the primary miRNA as the secondary one, secondry miRNAs can act as master regulators upstream of primary miRNAs and their target mRNAs. One of the distinguishing characteristics of secondary miRNAs as master regulators within a diverse set of differentially expressed genes is the absence of direct target mRNA for them. Instead, these master regulators exclusively govern the regulation of miRNAs that target specific mRNAs. Through in silico analysis, we identified 18 miRNAs among 385 differentially expressed miRNAs (DEmiRNAs) with no direct target mRNAs among 58 differentially expressed mRNAs (DEmRNAs) in peripheral blood of patients with myocardial infarction (MI). Instead, these secondary miRNAs targeted 9 primary miRNAs that had 36 direct targets among 58 DEmRNAs. We found that one primary miRNA might be regulated by more than one secondary miRNAs and each secondary miRNA can target more than one primary miRNAs. Among identified miRNA-miRNA-mRNA networks miR-188-5p/miR-299-3p/natural killer cell granule protein (NKG7), miR-200a-3p/miR-199b-5p/granzyme B (GZMB), and miR-377-3p/miR-581/oviductal glycoprotein 1 (OVGP1) exhibited higher scors in terms of expression levels (>2-fold increase or decrease) and strengh of interactions (ΔG < -5). Given the extensive network of miRNA interactions, focusing on master regulators opens up avenues for identifying key regulatory nodes for more effective therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA