Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(6): e22942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178006

RESUMO

Extracellular vesicles (EVs) possess great potential in the modulation of cardiovascular diseases. Our current work intended to assay the clinical significance of endothelial cell (EC)-derived EVs in atherosclerosis (AS). Expression of HIF1A-AS2, miR-455-5p, and ESRRG in plasma from AS patients and mice and EVs from ox-LDL-treated ECs was measured. Interactions among HIF1A-AS2, miR-455-5p, ESRRG, and NLRP3 were analyzed. Next, EVs were co-cultured with ECs, and ectopic expression and depletion experimentations of HIF1A-AS2, miR-455-5p, ESRRG, and/or NLRP3 were carried out to assay their roles in pyroptosis and inflammation of ECs in AS. At last, the effects of HIF1A-AS2 shuttled by EC-derived EVs on EC pyroptosis and vascular inflammation in AS were verified in vivo. HIF1A-AS2 and ESRRG were highly expressed, while miR-455-5p was poorly expressed in AS. HIF1A-AS2 could sponge miR-455-5p to elevate the expression of ESRRG and NLRP3. Both in vitro and in vivo experiments revealed that ECs-derived EVs carrying HIF1A-AS2 induced the pyroptosis and vascular inflammation of ECs to promote the progression of AS by sponging miR-455-5p via ESRRG/NLRP3. HIF1A-AS2 shuttled by ECs-derived EVs can accelerate the progression of AS by downregulating miR-455-5p and upregulating ESRRG and NLRP3.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Camundongos , Animais , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Células Endoteliais/metabolismo , Inflamação/metabolismo , Aterosclerose/metabolismo , Vesículas Extracelulares/metabolismo
2.
Cell Mol Life Sci ; 80(12): 359, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951845

RESUMO

Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.


Assuntos
MicroRNAs , Remodelação Ventricular , Humanos , Remodelação Ventricular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Coração , Cardiomegalia/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
IUBMB Life ; 74(3): 245-258, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904778

RESUMO

Circadian rhythms are approximately 24-hr cycles generated by organisms to adapt to daily rhythms. Core circadian proteins such as CLOCK, BMAL1, PER1/2, and CRY1/2/3 form a transcription-translation feedback loop (TTFL) to maintain circadian rhythms. MicroRNAs are involved in regulating circadian rhythms; however, the detailed mechanisms remain unclear. Here, using miRNA-seq screening, we discovered that the expression level of miR-455 was controlled by CLOCK. Furthermore, miR-455-5p also binds to the 3' untranslated region (3'UTR) of Clock mRNA and regulates its stability. To further study whether such mutual regulation forms a feedback loop to regulate circadian rhythms, we recorded bioluminescence traces of Per2::Luc U2OS cells in real time and confirmed that overexpression of miR-455-5p lengthens the period and attenuates the amplitude of circadian rhythms in synchronized cells (and vice versa). We also discovered that miR-455-5p can function as a Clock modulator to induce a fine-orchestral circadian rhythm in vitro, as well as other known factors such as dexamethasone, horse serum, or temperature. In conclusion, miR-455-5p is essential for maintaining a normal circadian rhythm via regulating Clock mRNA stability. Our study reveals a new mutual regulatory mechanism between CLOCK protein, Clock mRNA, and miR-455-5p, which regulates circadian rhythms in cells.


Assuntos
Ritmo Circadiano , MicroRNAs , Regiões 3' não Traduzidas , Proteínas CLOCK/genética , Ritmo Circadiano/genética , MicroRNAs/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Biotechnol Appl Biochem ; 69(2): 431-441, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33655541

RESUMO

A previous study has elucidated that circular RNA circCLK3 acts as an oncogenic gene in cervical cancer. However, the role and regulatory mechanism of circCLK3 in tongue squamous cell carcinoma (TSCC) remain unknown. Quantitative real-time PCR was used to examine targeted gene expression in different groups. Cell viability and proliferation were investigated by MTT and 5-ethynyl-2'-deoxyuridine assays. Cell migration and invasion were detected by Transwell assays, and cell apoptosis was measured by flow cytometry analysis. The interaction among genes was investigated using luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation assay. In the present study, our findings revealed the upregulated expression of circCLK3 in TSCC tissues and cell lines. CircCLK3 knockdown suppressed cell proliferation, migration invasion, and induced cell cycle arrest at G0/G1 phase in TSCC. Moreover, circCLK3 acted as a molecular sponge for miR-455-5p. PARVA was the target gene of miR-455-5p. Furthermore, the negative correlation between expression of miR-455-5p and circCLK3 or PARVA in TSCC tissues was discovered. Rescue assays indicated that PARVA overexpression reversed the circCLK3 knockdown-mediated inhibitory effects on the progression of TSCC. In summary, circCLK3 exerts its carcinogenic effects on TSCC progression via absorbing miR-455-5p to upregulate PARVA, which expands our knowledge on the underlying mechanism of TSCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias da Língua , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Língua/metabolismo , Língua/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806321

RESUMO

Colibacillosis is an acute and chronic avian disease caused by avian pathogenic E. coli (APEC). Previous studies have demonstrated that RIP2 plays a significant role in APEC infection. Moreover, increasing evidence indicates that microRNAs (miRNAs) are involved in host-pathogen interactions and the immune response. However, the role of miRNAs in the host against APEC infection remains unclear. Herein, we attempted to reveal new miRNAs potentially involved in the regulation of the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2 expression, via miRNA-seq, RT-qPCR, Western blotting, dual-luciferase reporter assay, and CCK-8. The results showed that a total of 93 and 148 differentially expressed (DE) miRNAs were identified in the knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. knockdown of RIP2 cells (shRIP2) and shRIP2 vs. wild-type cells (WT), respectively. Among those identified DE miRNAs, the biological function of gga-miR-455-5p was investigated. It was found that gga-miR-455-5p regulated by RIP2 was involved in the immune and inflammatory response against APEC infection via targeting of IRF2 to modulate the expression of type I interferons. Additionally, RIP2 could directly regulate the production of the type I interferons. Altogether, these findings highlighted the crucial role of miRNAs, especially gga-miR-455-5p, in host defense against APEC infection.


Assuntos
Infecções por Escherichia coli , Interferon Tipo I , MicroRNAs , Doenças das Aves Domésticas , Animais , Galinhas/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Aves Domésticas/genética
6.
J Cell Biochem ; 122(3-4): 442-455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33399227

RESUMO

As a posttranscriptional regulatory factor, microRNA (miRNA) plays an important role in the formation of myotubes. However, little is known about the mechanism of miRNA regulating myotube morphogenesis. Here, we aimed to characterize the function of miR-455-5p in myotube morphogenesis by inducing differentiation in C2C12 myoblasts containing murine Mylip fragments with the miR-455-5p target sequence. We found that miR-455-5p overexpression promoted the differentiation and hypertrophy of myotubes, while miR-455-5p inhibition led to the failure of myotube differentiation and formation of short myotubes. Furthermore, we demonstrated that miR-455-5p directly targeted the Mylip 3'-untranslated region, which plays a key role in monitoring myotube morphogenesis. Interestingly, the expression and function of Mylip were opposite to those of miR-455-5p during myogenesis. Our data uncovered novel miR-455-5p targets and established a functional link between Mylip and myotube morphogenesis. Understanding the involvement of Mylip in myotube morphogenesis provides insight into the function of the gene regulatory network.


Assuntos
Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , MicroRNAs/genética , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia
7.
Biochem Cell Biol ; 99(3): 385-395, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34077275

RESUMO

Resveratrol is a non-flavonoid polyphenol compound that exists in many plants, and is considered an antitoxin. This study explores the effects from the regulation of miR-455-5p by resveratrol on cisplatin-induced ototoxicity via the PTEN-PI3K-AKT signaling pathway. For this, House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were transfected with miR-455-5p inhibitor and treated with cisplatin and resveratrol, then cell proliferation, apoptosis, and oxidative stress were evaluated. A mouse model of hearing loss was established, and these mice were treated with cisplatin, resveratrol, or cisplatin combined with resveratrol, by intraperitoneal injection. The auditory brainstem response (ABR) threshold was measured, and hair cells were examined using immunofluorescence staining. The expression levels of miR-455-5p, PTEN, and PI3K/Akt proteins were examined. The results from our in-vitro experiments indicate that resveratrol promoted viability and reduced apoptosis and oxidative stress in cisplatin-induced HEI-OC1 cells. Resveratrol upregulated miR-455-5p, downregulated PTEN, and activated the PI3K-Akt axis. These effects of resveratrol were reversed by knock-down of miR-455-5p. The results from our in-vivo experiments indicate that resveratrol protected hearing and inhibited the hair-cell injury caused by cisplatin ototoxicity. Resveratrol also upregulated miR-455-5p, downregulated PTEN, and activated the PTEN-PI3K-Akt axis in cochlear tissues from cisplatin-treated mice. These results indicate that resveratrol upregulates miR-455-5p to target PTEN and activate the PI3K-Akt signaling pathway to counteract cisplatin ototoxicity.


Assuntos
Cisplatino/toxicidade , MicroRNAs/genética , Ototoxicidade/tratamento farmacológico , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol/farmacologia , Animais , Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
8.
J Cell Mol Med ; 24(20): 11755-11767, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32918360

RESUMO

Our objective was to determine the molecular mechanisms by which lncRNA HOXA-AS3 regulates the biological behaviour of glioblastoma multiforme (GBM). We used an lncRNA microarray assay to identify GBM-related lncRNA expression profiles. Qrt-PCR was used to survey the levels of expression of long non-coding RNA (lncRNA) HOXA-AS3 and the target gene. Dual-luciferase reporter assays were used to investigate the interaction of lncRNA HOXA-AS3, the target gene and miRNA. Western blot analysis was used to examine the expression of USP3 and epithelial-mesenchymal transition (EMT) genes. The MTT assay, transwell assay and wound healing assay were used to analyse the effects of lncRNA HOXA-AS3 on GBM cell viability, mobility and invasiveness, respectively. Our results showed that lncRNA HOXA-AS3 was significantly up-regulated in GBM cells and could promote GBM cell proliferation, invasion and migration in vitro and in vivo. HOXA-AS was found to be associated with poor survival prognosis in glioma patients. The dual-luciferase reporter assay also revealed that lncRNA HOXA-AS3 acts as a mir-455-5p sponge by up-regulating USP3 expression to promote GBM progression. Western blot analysis showed that lncRNA HOXA-AS3 could up-regulate EMT-related gene expression in GBM. Experiments showed mir-455-5p could rescue the effect of lncRNA HOXA-AS3 on cell proliferation and invasion. The newly identified HOXA-AS3/mir-455-5p/USP3 pathway offers important clues to understanding the key mechanisms underlying the action of lncRNA HOXA-AS3 in glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , Proteases Específicas de Ubiquitina/genética , Animais , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , RNA Longo não Codificante/genética , Proteases Específicas de Ubiquitina/metabolismo , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243136

RESUMO

Our previous study showed that pentagalloylglucose (PGG), a naturally occurring hydrolyzable phenolic tannin, possesses significant anti-rabies virus (RABV) activity. In BHK-21 cells, RABV induced the overactivation of signal transducer and activator of transcription 3 (STAT3) by suppressing the expression of suppressor of cytokine signaling 3 (SOCS3). Inhibition of STAT3 by niclosamide, small interfering RNA, or exogenous expression of SOCS3 all significantly suppressed the replication of RABV. Additionally, RABV-induced upregulation of microRNA 455-5p (miR-455-5p) downregulated SOCS3 by directly binding to the 3' untranslated region (UTR) of SOCS3. Importantly, PGG effectively reversed the expression of miR-455-5p and its following SOCS3/STAT3 signaling pathway. Finally, activated STAT3 elicited the expression of interleukin-6 (IL-6), thereby contributing to RABV-associated encephalomyelitis; however, PGG restored the level of IL-6 in vitro and in vivo in a SOCS3/STAT3-dependent manner. Altogether, these data identify a new miR-455-5p/SOCS3/STAT3 signaling pathway that contributes to viral replication and IL-6 production in RABV-infected cells, with PGG exerting its antiviral effect by inhibiting the production of miR-455-5p and the activation of STAT3.IMPORTANCE Rabies virus causes lethal encephalitis in mammals and poses a serious public health threat in many parts of the world. Numerous strategies have been explored to combat rabies; however, their efficacy has always been unsatisfactory. We previously reported a new drug, PGG, which possesses a potent inhibitory activity on RABV replication. Herein, we describe the underlying mechanisms by which PGG exerts its anti-RABV activity. Our results show that RABV induces overactivation of STAT3 in BHK-21 cells, which facilitates viral replication. Importantly, PGG effectively inhibits the activity of STAT3 by disrupting the expression of miR-455-5p and increases the level of SOCS3 by directly targeting the 3' UTR of SOCS3. Furthermore, the downregulated STAT3 inhibits the production of IL-6, thereby contributing to a reduction in the inflammatory response in vivo Our study indicates that PGG effectively inhibits the replication of RABV by the miR-455-5p/SOCS3/STAT3/IL-6-dependent pathway.


Assuntos
Taninos Hidrolisáveis/farmacologia , Vírus da Raiva/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Cricetinae , Interleucina-6/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Raiva/virologia , Vírus da Raiva/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
10.
Cell Mol Biol (Noisy-le-grand) ; 66(5): 155-161, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33040830

RESUMO

This experiment was conducted to investigate whether total flavones of Clematis filamentosa Dunn affect the inflammatory response and apoptosis of vascular smooth muscle cells induced by oxidized low-density lipoprotein (oxLDL) by regulating microRNA-455-5p (miR-455-5p). 50 mg/mL oxLDL was performed to stimulate the injury of vascular smooth muscle cells, and the total flavones of Clematis filamentosa Dunn were added at concentrations of 75, 150, and 300 µg/mL. The expressions of inflammatory factors IL-1ß and TNF-α were analyzed by ELISA, the apoptosis was evaluated by flow cytometry, the expression of Bcl-2 and Bax was determined by western blot, and the real-time fluorescence quantitative PCR (qRT-PCR) was applied to detect miR-455-5p expression. MiR-455-5p mimic was transfected into vascular smooth muscle cells and then induced injury with oxLDL; miR-455-5p inhibitor was transfected into vascular smooth muscle cells and treated with oxLDL and 300 µg/mL total flavones of Clematis filamentosa Dunn. The above methods were employed to investigate the inflammatory response and apoptosis of cells. The total flavones of Clematis filamentosa Dunn significantly inhibited the expression of IL-1ß, TNF-α, apoptosis rate, Bax protein expression of oxLDL induced vascular smooth muscle cells, and remarkably promoted the expression of Bcl-2 protein and miR-455-5p, which all showed concentration dependence (p<0.05). Overexpression of miR-455-5p reduced IL-1ß, TNF-α expression, apoptosis rate, Bax protein expression, and greatly increased Bcl-2 protein expression in oxLDL injured vascular smooth muscle cells (p<0.05). After interfering with the expression of miR-455-5p, the inhibitory effect of total flavones of Clematis filamentosa Dunn on the expression of IL-1ß, TNF-α, apoptosis, Bax protein expression of oxLDL-induced vascular smooth muscle cells was reversed, and its promotion effect on Bcl-2 protein expression was also reversed. Total flavones of Clematis filamentosa Dunn can reduce oxLDL-induced vascular smooth muscle cell inflammation and inhibit its apoptosis. The mechanism of action is related to the up-regulation of miR-455-5p expression.


Assuntos
Clematis/química , Flavonas/farmacologia , Lipoproteínas LDL/genética , MicroRNAs/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Lesões do Sistema Vascular/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-1beta/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/genética , Proteína X Associada a bcl-2/genética
11.
Arch Gynecol Obstet ; 301(5): 1307-1315, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303890

RESUMO

BACKGROUND: MicroRNAs (miRNAs) have been increasingly exploited in human malignancies. The regulation of microRNA-455-5p (miR-455-5p) has been shown in several cancers, except for cervical carcinoma. Therefore, the role of miR-455-5p was exploited in cervical carcinoma. METHODS: The qRT-PCR experiment was used to assess miR-455-5p and S1PR1 expression levels. We explored the function of miR-455-5p through MTT and Transwell assays. The mTOR pathway and cell apoptosis were detected by Western blot assays. The relationship between miR-455-5p and S1PR1 was testified by dual-luciferase reporter assay. RESULTS: MiR-455-5p expression was decreased in cervical carcinoma, which was related to poor clinical outcome in cervical carcinoma patients. MiR-455-5p inhibited cell viability and metastasis in cervical carcinoma. Further, S1PR1 is a direct target of miR-455-5p. S1PR1 recovered the inhibition of cell viability and metastasis induced by miR-455-5p in cervical carcinoma. In addition, miR-455-5p induced cell apoptosis and inactivated the mTOR pathway in cervical carcinoma. CONCLUSION: MiR-455-5p exerts inhibitory effect in cervical carcinoma through targeting S1PR1 and blocking the mTOR pathway.


Assuntos
MicroRNAs/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Serina-Treonina Quinases TOR/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Transfecção , Neoplasias do Colo do Útero/patologia
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(6): 673-677, 2020 Jun 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-32879124

RESUMO

OBJECTIVES: To provide clues for further study of the relationship between miRNAs and Kawasaki disease (KD) development, and to provide molecular markers for ultimately improve the rate of early diagnosis for KD. METHODS: We collected acute, recovery KD children's plasma and normal samples, then used the miRNAs Assay Chip to screen the differentially expressed miRNAs in the plasma from KD children. Subsequently, miR-455-5p, which had identified via miRNAs assay chip, was validated by quantitative real-time PCR via independent cohort. RESULTS: According to the results of miRNAs Assay chip, we identified a miRNAs panel including 5 miRNAs significantly up-regulated and 5 miRNAs remarkably down-regulated in the plasma from KD children compared to the normal control; miR-455-5p in both of acute and recovery KD children's plasma was remarkably lower than that in the normal control (P<0.001, P=0.013, respectively), and miR-455-5p was also significantly lower than that in the recovery of KD children (P=0.007) by independent cohort validation. CONCLUSIONS: There are significantly differentially expressed circulating miRNAs between the KD children and normal control. We identified 10 miRNAs dysregulation in the KD children's plasma compared with the normal group. Circulating miR-455-5p in both of acute and recovery KD children's plasma is remarkably lower than that in the normal control, and miR-455-5p may considered as a marker to show the recovery process of KD children. Plasma specific circulating miRNAs play an important role in the early diagnosis of KD and become the new molecular marker of KD in the future.


Assuntos
MicroRNAs/genética , Síndrome de Linfonodos Mucocutâneos/genética , Biomarcadores , Criança , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
13.
J Cell Physiol ; 234(12): 21915-21924, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31041827

RESUMO

Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1ß (IL-1ß), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.


Assuntos
Inflamação/metabolismo , MicroRNAs/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
14.
J Cell Physiol ; 234(8): 13242-13251, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584669

RESUMO

OBJECTIVES: We herein aimed to explore whether growth arrest-specific 5 (GAS5) promotes M1 macrophage polarization in childhood pneumonia and to investigate the underlying mechanism. METHODS: Relative GAS5 and miR-455-5p expression and suppressor of cytokine signaling 3 (SOCS3) messenger RNA level were examined using quantitative reverse transcription polymerase chain reaction. Protein expression of SOCS3 and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway-related proteins was detected using western blot analysis. Luciferase activity assay was performed to test whether miR-455-5p could bind to GAS5 or SOCS3. The macrophage phenotype was determined using flow cytometry analysis and enzyme-linked immunosorbent assay. RESULTS: The macrophage polarization toward the M2 phenotype was observed in peripheral blood from pneumonia children. Furthermore, GAS5 and SOCS3 expression were upregulated but miR-455-5p downregulated in human monocyte-derived macrophages from pneumonia children compared with the control group. Furthermore, GAS5 acted as a sponge for miR-455-5p to facilitate SOCS3 expression. Moreover, miR-455-5p mimic and SOCS3 knockdown significantly reversed the GAS5 overexpression-mediated suppression of the JAK2/STAT3 signaling and promotion of M1 polarization. CONCLUSION: GAS5 promotes M1 macrophage polarization by acting as a competing endogenous RNA of miR-455-5p to facilitate SOCS3 expression in childhood pneumonia.


Assuntos
Ativação de Macrófagos/fisiologia , MicroRNAs/metabolismo , Pneumonia/imunologia , RNA Longo não Codificante/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Diferenciação Celular/imunologia , Criança , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , MicroRNAs/imunologia , Pneumonia/metabolismo , RNA Longo não Codificante/imunologia , Transdução de Sinais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/imunologia
15.
Immunogenetics ; 71(2): 87-95, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30310937

RESUMO

MicroRNA-455-5p (miR-455-5p) seems to have an anti-inflammatory role in the immune system since its expression is induced by IL-10 cytokine. Multiple sclerosis (MS) is a chronic demyelinating neurodegenerative disease of the central nervous system that is caused by an autoimmune inflammatory attack against the myelin insulation of neurons. The expression level of miR-455-5p and its role in MS pathogenesis has yet to be elucidated. We found that miR-455-5p expression was highly correlated with disease severity in MS patients. miR-455-5p expression inversely correlates with its inflammatory-predicted targets (MyD88 and REL) in relapse- and remitting-phase patients. Luciferase assays confirm that MyD88 and REL are direct targets of miR-455-5p. This study represents the first report of the miR-455-5p acts as an anti-inflammatory role in MS, at least partially through targeting MyD88 and REL. This study may provide important information for the use of miR-455-5p as a novel strategy to improve the severity of disease and control inflammation and attack in MS patients.


Assuntos
Inflamação/prevenção & controle , MicroRNAs/fisiologia , Esclerose Múltipla Recidivante-Remitente/terapia , Adulto , Regulação para Baixo , Feminino , Humanos , Masculino , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Fator 88 de Diferenciação Mieloide/genética , Recidiva
16.
Cancer Immunol Immunother ; 68(7): 1157-1169, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31197461

RESUMO

Chordoma is difficult to eradicate due to high local recurrence rates. The immune microenvironment is closely associated with tumor prognosis; however, its role in skull base chordoma is unknown. The expression of Galectin-9 (Gal9) and tumor-infiltrating lymphocyte (TIL) markers was assessed by immunohistochemistry. Kaplan-Meier and multivariate Cox analyses were used to assessing local recurrence-free survival (LRFS) and overall survival (OS) of patients. MiR-455-5p was identified as a regulator of Gal9 expression. Immunopositivity for Gal9 was associated with tumor invasion (p = 0.019), Karnofsky performance status (KPS) score (p = 0.017), and total TIL count (p < 0.001); downregulation of miR-455-5p was correlated with tumor invasion (p = 0.017) and poor prognosis; and the T-cell immunoglobulin and mucin-domain 3 (TIM3)+ TIL count was associated with chordoma invasion (p = 0.010) and KPS score (p = 0.037). Furthermore, multivariate analysis indicated that only TIM3+ TIL density was an independent prognostic factor for LRFS (p = 0.010) and OS (p = 0.016). These results can be used to predict clinical outcome and provide a basis for immune therapy in skull base chordoma patients.


Assuntos
Cordoma/patologia , Galectinas/genética , Linfócitos do Interstício Tumoral/imunologia , MicroRNAs/metabolismo , Neoplasias da Base do Crânio/patologia , Adolescente , Adulto , Idoso , Criança , Cordoma/genética , Cordoma/imunologia , Cordoma/mortalidade , Intervalo Livre de Doença , Feminino , Seguimentos , Galectinas/imunologia , Galectinas/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/imunologia , Prognóstico , Estudos Retrospectivos , Neoplasias da Base do Crânio/imunologia , Neoplasias da Base do Crânio/mortalidade , Análise de Sobrevida , Adulto Jovem
17.
Heliyon ; 10(2): e24812, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312562

RESUMO

Acute myeloid leukemia (AML) is a common blood cancer primarily affecting the bone marrow and blood cells, which is prevalent among adults. Long non-coding RNAs (lncRNAs) have been shown to play a crucial role in the development and progression of AML. LBX2-AS1 is a recently discovered lncRNA that has been linked to the pathogenesis and progression of several types of cancer. This study aimed to investigate the role and possible mechanisms of LBX2-AS1 in AML. Expression levels of LBX2-AS1, miR-455-5p, and their target genes were detected in AML samples and cells by RT-qPCR. Cell proliferation and apoptosis were determined by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays, and flow cytometry, respectively. LBX2-AS1 was downregulated in AML specimens and cells, and overexpression of LBX2-AS1 significantly inhibited cell proliferation and enhanced apoptosis in vitro. We also determined the effects of LBX2-AS1 overexpression in an AML mouse model by in vivo bioluminescence imaging. Mechanistically, LBX2-AS1 acts as a competitive endogenous RNA, which promotes myosin regulatory light chain interacting protein (MYLIP) expression by sponging miR-455-5p. Knockdown of MYLIP or upregulation of miR-455-5p antagonized the effect of LBX2-AS1 overexpression on the progression of AML. LBX2-AS1 may thus be a valuable therapeutic target for AML.

18.
Int Immunopharmacol ; 138: 112464, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917526

RESUMO

BACKGROUND: Our previous research demonstrated that resveratrol counters DDP-induced ototoxicity by upregulating miR-455-5p, which targets PTEN. This study aimed to elucidate the underlying mechanisms involving GAS5 and DNA methyltransferase 1 (DNMT1) in resveratrol's protective action. METHODS: A luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to study the binding between GAS5 and miR-455-5p, as well as between miR-455-5p and PTEN. HEI-OC1 cells treated with DDP were transfected with vectors for GAS5, si-GAS5, DNMT1, si-DNMT1, and miR-455-5p mimics, as well as PTEN. Subsequently, they were treated with resveratrol and exposed to DDP, both separately and in combination. The distribution of CpG islands in the GAS5 promoter was identified using MethyPrimer, and methylation-specific PCR (MSP) was conducted to determine the methylation levels of GAS5. Chromatin immunoprecipitation (ChIP) was utilized to examine the interaction between DNMT1 and GAS5. The viability of HEI-OC1 cells, catalase (CAT) activity, apoptosis, and ROS levels were assessed using the CCK-8 assay, CAT assay, TUNEL staining, and flow cytometry, respectively. An in vivo mouse model was developed to measure auditory brainstem response (ABR) thresholds, while RT-qPCR and Western blot analysis were employed to evaluate molecular levels. RESULTS: Our study discovered that GAS5 acts as a sponge for miR-455-5p, thereby increasing PTEN expression in DDP-treated HEI-OC1 cells. This process was reversed upon treatment with resveratrol. Importantly, DNMT1 promoted the methylation of the GAS5 promoter, leading to the suppression of GAS5 expression. This suppression enhanced the effectiveness of resveratrol in combating DDP-induced apoptosis and ROS in HEI-OC1 cells and amplified its protective effect against DDP's ototoxicity in vivo. CONCLUSIONS: Our research emphasizes the significance of the DNMT1/GAS5/miR-455-5p/PTEN axis as a promising new route to boost resveratrol's effectiveness against DDP-induced ototoxicity.


Assuntos
Cisplatino , DNA (Citosina-5-)-Metiltransferase 1 , Epigênese Genética , MicroRNAs , Ototoxicidade , PTEN Fosfo-Hidrolase , RNA Longo não Codificante , Resveratrol , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ototoxicidade/prevenção & controle , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Epigênese Genética/efeitos dos fármacos , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos
19.
Poult Sci ; 103(11): 104169, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39244785

RESUMO

Valgus-varus deformity (VVD) is a common long bone deformity in broilers. Imbalance in cartilage homeostasis is the main feature of leg disease. Exosomes act as an important intercellular communication vector that regulates chondrogenesis by encapsulating specific nucleic acids and proteins. However, the exact mechanism of how plasma exosomal miRNAs regulate cartilage homeostasis in VVD broilers remains unclear. This study first demonstrated the structural disorder, growth retardation, and reduced proliferative capacity of VVD cartilage in vitro and in vivo. Subsequently, VVD and Normal broiler plasma exosomes were collected for miRNA sequencing. Cartilage-specific miR-455-5p was extraordinarily emphasized by performing bioinformatics analysis on differential miRNA target genes and further validated by tissue expression profiling. PKH67 fluorescently labeled plasma exosomes were shown to be taken up by chondrocytes, deliver miR-455-5p, inhibit chondrocyte proliferation, and disrupt their homeostasis, and these effects could be inhibited by the miR-inhibitors. Mechanistically, MiR-455-5p targets Ribosomal Protein S6 Kinase B1 (RPS6KB1) to inhibit RPS6 phosphorylation and reduce the synthesis of key proteins for cartilage proliferation, which in turn inhibits cartilage proliferation and disrupts its homeostasis. In conclusion, the present study identified abnormalities in VVD cartilage tissue and clarified the specific mechanism by which plasma exosome-derived miR-455-5p regulates cartilage homeostasis.

20.
Protein Pept Lett ; 30(12): 992-1000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38013437

RESUMO

OBJECTIVES: We aim to investigate the regulatory mechanisms of miR-455-5p/SOCS3 pathway that underlie the proliferation, migration, and invasion of triple-negative breast cancer (TNBC) cells. METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-455-5p expression in breast cancer tissues and cell lines. CCK8 and Transwell assays were conducted to assess the effects of miR-455-5p on breast cancer line proliferation, migration, and invasion. SOCS3 expression level in breast cancer tissues and cell lines was determined by qPCR and western blotting. The targeting relationship between miR-455-5p and SOCS3 was determined by dual luciferase reporter gene assay in different breast cancer cell lines. Finally, the upstream and downstream regulatory association between miR-455-5p and SOCS3 was confirmed in breast cancer cells by CCK8, western blot, and Transwell assays. RESULTS: MiR-455-5p expression was up-regulated in breast cancer tissues; miR-455-5p regulates TNBC proliferation, migration, and invasion of TNBC. SOCS3 was the direct target of miR-455-5p and was down-regulated in breast cancer. Interference with SOCS3 reversed the inhibitory effect of the miR-455-5p inhibitor on breast cancer cells' malignant potential. CONCLUSION: MiR-455-5p promotes breast cancer progression by targeting the SOCS3 pathway and may be a potential therapeutic target for breast cancer.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Células MCF-7 , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA