Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Oral Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852165

RESUMO

OBJECTIVES: Periodontitis seriously affects oral-related quality of life and overall health. Long intergenic non-coding RNA 01126 (LINC01126) is aberrantly expressed in periodontitis tissues. This study aimed to explore the possible pathogenesis of LINC01126 in periodontitis. METHODS: Inflammatory model of human gingival fibroblasts (HGFs) was established. Cell Counting Kit-8 (CCK-8), wound healing assay, and flow cytometry were utilized to detect biological roles of LINC01126. Binding site of miR-655-3p to LINC01126 and IL-6 was predicted. Then, subcellular localization of LINC01126 and the binding ability of miR-655-3p to LINC01126 and IL-6 in HGFs were verified. Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC) staining were utilized to detect tissue morphology and proteins expression of clinical samples. RESULTS: LINC01126 silencing can alleviate cell inflammation induced by lipopolysaccharide derived from Porphyromonas gingivalis, reduce cell apoptosis, and promote cell migration. As a "sponge" for miR-655-3p, LINC01126 inhibits its binding to mRNA of IL-6, thereby promoting inflammation progression and JAK2/STAT3 pathway activation. Quantitative real-time PCR, Western Blot, and IHC results of clinical tissue samples further confirmed that miR-655-3p expression was down-regulated and IL-6/JAK2/STAT3 was abnormally activated in periodontitis tissues. CONCLUSIONS: In summary, serving as an endogenous competitive RNA of miR-655-3p, LINC01126 promotes IL-6/JAK2/STAT3 pathway activation, thereby promoting periodontitis pathogenesis.

2.
Cell Biol Toxicol ; 39(4): 1319-1339, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36222945

RESUMO

OBJECTIVE: This study clarified the function of human umbilical cord mesenchymal stem cell (hUCMSC)-derived extracellular vesicle (EV)-enclosed miR-655-3p in esophageal squamous cell carcinoma (ESCC). METHODS: A Chi-square test and the Kaplan-Meier estimator were used to analyze the prognosis of ESCC in relation to the expression of miR-655-3p. ESCC cells were incubated with PBS or hUCMSC-derived EVs (hUCMSC-EVs) in the conditions of gene modification, after which the malignant behaviors of ESCC cells were assessed and the molecular interactions were determined. The effect of hUCMSC-derived EV-miR-655-3p was also investigated in a nude mouse model of ESCC. RESULTS: Low expression of miR-655-3p indicated poor prognosis of ESCC. hUCMSC-EVs suppressed the malignant behaviors of ESCC cells and the growth and liver metastasis of transplanted tumors. Inhibition of miR-655-3p in hUCMSCs impaired the therapeutic effect of hUCMSC-EVs. LMO4, targeted by miR-655-3p, activated the transcription of HIF-1α by sequestering HDAC2 from HIF-1α promoter. Knockdown of LMO4 suppressed ESCC cell activities, while overexpression of HIF-1α counteracted the tumor suppressive effect of LMO4 knockdown. CONCLUSION: miR-655-3p enclosed in hUCMSC-derived EVs inhibits ESCC progression partially by inactivating HIF-1α via the LMO4/HDAC2 axis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo
3.
Cancer Cell Int ; 22(1): 330, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309693

RESUMO

BACKGROUND: Long non-coding RNA X-inactive specific transcript (XIST) regulates the progression of a variety of tumors, including osteosarcoma. Bone marrow mesenchymal stem cells (BMSCs) can be recruited into osteosarcoma tissue and affect the progression by secreting exosomes. However, whether BMSCs derived exosomes transmit XIST to regulate the growth and metastasis of osteosarcoma and the related mechanism are still unclear. METHOD: In this study, BMSCs derived exosomes were used to treat human osteosarcoma cells MG63 and 143B, and the level of XIST in BMSCs was intervened by siRNA. CCK-8, EdU, transwell assays were used to analyze the changes of cell proliferation, migration and invasion. Bioinformatics analysis, RNA pulldown and dual-luciferase reporter gene assays validated the targeted relationship of XIST with miR-655 and the interaction between miR-655 and ACLY 3'-UTR. 143B/LUC cell line was used to establish an animal model of in situ osteosarcoma to verify the found effects of XIST on osteosarcoma. Oil Red O staining, Western blot and so on were used to detect the changes of lipid deposition and protein expression. RESULTS: It was found that BMSCs derived exosomes promoted the proliferation, migration and invasion of osteosarcoma cells, and the down-regulation of XIST inhibited this effect. miR-655 mediated the role of BMSCs derived exosomal XIST in promoting the progression of osteosarcoma and down-regulation of miR-655 could reverse the effects of inhibiting XIST on the proliferation, migration and invasion of osteosarcoma cells. Meanwhile, animal level results confirmed that BMSCs derived exosomal XIST could promote osteosarcoma growth and lung metastasis by combining with miR-655. In-depth mechanism study showed that BMSCs derived exosomal XIST combined with miR-655 to increase the protein level of ACLY, which led to lipid deposition and activate ß-catenin signal to promote the proliferation, migration and invasion of osteosarcoma cells. CONCLUSION: This study showed that BMSCs derived exosomal XIST could enter osteosarcoma cells, bind and down-regulates the level of miR-655, resulting in an increase in the level of ACLY, thus increasing the lipid deposition and the activity of ß-catenin signal to promote the growth and metastasis of osteosarcoma.

4.
Cancer Cell Int ; 21(1): 233, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902589

RESUMO

BACKGROUND: Invasive bladder tumors cause a worse prognosis in patients and remain a clinical challenge. Epithelial-mesenchymal transition (EMT) is associated with bladder cancer metastasis. In the present research, we attempted to demonstrate a novel mechanism by which a long noncoding RNA (lncRNA)-miRNA-mRNA axis regulates EMT and metastasis in bladder cancer. METHODS: Immunofluorescence (IF) staining was used to detect Vimentin expression. The protein expression of ZEB1, Vimentin, E-cadherin, and Snail was investigated by using immunoblotting assays. Transwell assays were performed to detect the invasive capacity of bladder cancer cells. A wound healing assay was used to measure the migratory capacity of bladder cancer cells. RESULTS: Herein, we identified lncRNA VIM-AS1 as a highly- expressed lncRNA in bladder cancer, especially in metastatic bladder cancer tissues and high-metastatic bladder cancer cell lines. By acting as a ceRNA for miR-655, VIM-AS1 competed with ZEB1 for miR-655 binding, therefore eliminating the miR-655-mediated suppression of ZEB1, finally promoting EMT in both high- and low-metastatic bladder cancer cells and enhancing cancer cell metastasis. CONCLUSIONS: In conclusion, the VIM-AS1/miR-655/ZEB1 axis might be a promising target for improving bladder cancer metastasis via an EMT-related mechanism.

5.
Biochem Biophys Res Commun ; 529(2): 148-155, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703403

RESUMO

Long noncoding RNAs (lncRNAs) have undergone a comprehensive study for their involvements in tumor treatments. The purpose of our study was to explore the biological effects and regulatory mechanisms of lncRNA LINC01194 (LINC01194) in laryngeal squamous cell carcinoma (LSCC). The levels of LINC01194 in 105 LSCC patients were detected by RT-qPCR. The diagnostic and prognostic value of LINC01194 in LSCC patients were statistically analyzed. The potential functions of LINC01194 in proliferation, apoptosis, and metastasis of LSCC cells were evaluated. The interaction among LINC01194, miR-655 and SOX18 was explored by bioinformatics analysis, luciferase reporter assays and biotinylated RNA pull-down. We found that the expression levels of LINC01194 were highly expressed in LSCC, which was negatively correlated with the clinical outcome of LSCC patients. The area under the ROC curve for LINC01194 was up to 0.8388. Functional assays indicated that LINC01194 knockdown distinctly inhibited LSCC cells proliferation, induced apoptosis, and also attenuated LSCC cells migration and invasion in vitro. Furthermore, we elucidated that LINC01194 promoted SOX18 expression in LSCC cells via functioning as a molecular sponge for miR-655. Overall, based on our findings, LINC01194 served as a tumor promoter and potentially represents a novel prognostic indicator and therapeutic target in LSCC.


Assuntos
Neoplasias Laríngeas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXF/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/patologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
6.
J Dairy Res ; 87(2): 232-238, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32295660

RESUMO

In this research paper we filter and verify miRNAs which may target silent information regulator homolog 2 (SIRT2) gene and then describe the mechanism whereby miRNA-212 might regulate lipogenic genes in mammary epithelial cell lines via targeting SIRT2. Bioinformatics analysis revealed that the bovine SIRT2 gene is regulated by three miRNAs: miR-212, miR-375 and miR-655. The three miRNAs were verified and screened by qRT-PCR, western blot, and luciferase multiplex verification techniques and only miR-212 was shown to have a targeting relationship with SIRT2. The results of co-transfecting miR-212 and silencing RNA (siRNA) showed that by targeting SIRT2, miR-212 can regulate the expression of fatty acid synthetase (FASN) and sterol regulatory element binding factor 1 (SREBP1) but not peroxisome proliferator-activated receptor gamma (PPARγ). Measurement of triglyceride (TAG) content showed that miR-212 increased the fat content of mammary epithelial cell lines. The study indicates that miR-212 could target and inhibit the expression of the SIRT2 gene to promote lipogenesis in mammary epithelial cell lines.


Assuntos
Bovinos/genética , Lipogênese/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/fisiologia , Sirtuína 2/genética , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Ácido Graxo Sintases/genética , Feminino , Regulação da Expressão Gênica/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Sirtuína 2/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transfecção
7.
Biosci Biotechnol Biochem ; 83(9): 1703-1708, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31094297

RESUMO

miR-655-3p functions as a tumor suppressor in tumor metastases; however, its role and mechanism in regulating cell migration and invasion of non-small cell lung cancer (NSCLC) remain unclear. Here, we found that miR-655-3p expression was markedly decreased in the NSCLC cell lines A549, NCI-H1650, PC14/b, NCI-H1299, and HPAEpiC compared to levels observed in normal human lung fibroblasts. miR-655-3p overexpression significantly inhibited migration and invasion of A549 and PC14/b cells, and pituitary tumor-transforming 1 (PTTG1) expression was up-regulated in the NSCLC cells. Luciferase reporter assays indicated that PTTG1 was a direct target of miR-655-3p. Additionally, PTTG1 overexpression alleviated the inhibitory effect of miR-655-3p on migration and invasion abilities in A549 and PC14/b cells. In conclusion, miR-655-3p inhibits NSCLC migration and invasion by targeting PTTG1, suggesting that miR-655-3p may serve as a therapeutic target to provide a new approach for the clinical treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/fisiologia , Neoplasias Pulmonares/patologia , MicroRNAs/fisiologia , Invasividade Neoplásica/fisiopatologia , Neoplasias Hipofisárias/metabolismo , Linhagem Celular Tumoral , Humanos
8.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430859

RESUMO

In eukaryotes, overproduction of reactive oxygen species (ROS) causes oxidative stress, which contributes to chronic inflammation and cancer. MicroRNAs (miRNAs) are small, endogenously produced RNAs that play a major role in cancer progression. We established that overexpression of miR526b/miR655 promotes aggressive breast cancer phenotypes. Here, we investigated the roles of miR526b/miR655 in oxidative stress in breast cancer using in vitro and in silico assays. miRNA-overexpression in MCF7 cells directly enhances ROS and superoxide (SO) production, detected with fluorescence assays. We found that cell-free conditioned media contain extracellular miR526b/miR655 and treatment with these miRNA-conditioned media causes overproduction of ROS/SO in MCF7 and primary cells (HUVECs). Thioredoxin Reductase 1 (TXNRD1) is an oxidoreductase that maintains ROS/SO concentration. Overexpression of TXNRD1 is associated with breast cancer progression. We observed that miR526b/miR655 overexpression upregulates TXNRD1 expression in MCF7 cells, and treatment with miRNA-conditioned media upregulates TXNRD1 in both MCF7 and HUVECs. Bioinformatic analysis identifies two negative regulators of TXNRD1, TCF21 and PBRM1, as direct targets of miR526b/miR655. We validated that TCF21 and PBRM1 were significantly downregulated with miRNA upregulation, establishing a link between miR526b/miR655 and TXNRD1. Finally, treatments with oxidative stress inducers such as H2O2 or miRNA-conditioned media showed an upregulation of miR526b/miR655 expression in MCF7 cells, indicating that oxidative stress also induces miRNA overexpression. This study establishes the dynamic functions of miR526b/miR655 in oxidative stress induction in breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Estresse Oxidativo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo
9.
J Cell Mol Med ; 20(5): 864-73, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26820102

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR-655 was down-regulated in TNBC, and its expression levels were associated with molecular-based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR-655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR-655 not only induced the up-regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal-like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR-655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR-655 significantly suppressed Prrx1, as demonstrated by Prrx1 3'-untranslated region luciferase report assay. Our study demonstrated that miR-655 inhibits the acquisition of the EMT phenotype in TNBC by down-regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Adulto , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Genes Reporter , Proteínas de Homeodomínio/genética , Humanos , Queratinas/genética , Queratinas/metabolismo , Luciferases/genética , Luciferases/metabolismo , Metástase Linfática , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Ligação Proteica , Transdução de Sinais , Vimentina/genética , Vimentina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Tumour Biol ; 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608369

RESUMO

Norcantharidin (NCTD) is currently used as an anticancer drug for the treatment of some malignant cancers. However, whether it may have therapeutic effects on glioblastoma multiforme (GBM) remains unknown. Moreover, the underlying mechanisms have not been completely elucidated. Recently, SUMO-specific protease 6 (SENP6) has been shown as a tumor suppressor in some cancers. Nevertheless, whether it is involved in the pathogenesis of GBM has not been examined. Here, we studied the effects of NCTD on GBM cells. We found that NCTD dose-dependently increased SENP6 protein, but not messenger RNA (mRNA), in GBM cells, resulting in the suppression of cell invasion. Depletion of SENP6 in GBM cells significantly attenuated the NCTD-induced suppression of GBM cell invasion, while overexpression of SENP6 in GBM cells mimicked the effects of NCTD on cell invasion. Moreover, NCTD dose-dependently decreased the levels of microRNA-655 (miR-655), which bound to 3'-UTR of SENP6 mRNA to inhibit its translation. Overexpression of miR-655 decreased SENP6 in GBM cells, while depletion of miR-655 increased SENP6 protein in GBM cells. Taken together, our data demonstrates a previously unappreciated control of NCTD to suppress GBM cell invasion through modulation of miR-655-regulated SENP6 protein translation.

11.
Heliyon ; 9(4): e15421, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128318

RESUMO

MicroRNA (miRNA/miR) 526 b- and miR655-overexpressed tumor cell-free secretions regulate the breast cancer tumor microenvironment (TME) by promoting tumor-associated angiogenesis, oxidative stress, and hypoxic responses. Additionally, premature miRNA (pri-miR526b and pri-miR655) are established breast cancer blood biomarkers. However, the mechanisms of how these miRNAs regulate the TME has yet to be investigated. Mass spectrometry analysis of miRNA-overexpressed cell lines MCF7-miR526b, MCF7-miR655, and miRNA-low MCF7-Mock cell-free secretomes identified 34 differentially expressed proteins coded by eight genes. In both miRNA-high cell secretomes, four markers are upregulated: YWHAB, SFN, TXNDC12, and MYL6B, and four are downregulated: PEA15, PRDX4, PSMB6, and FN1. All upregulated marker transcripts are significantly high in both total cellular RNA pool and cell-free secretions of miRNA-high cell lines, validated with quantitative RT-PCR. Bioinformatics tools were used to investigate these markers' roles in breast cancer. These markers' top gene ontology functions are related to apoptosis, oxidative stress, membrane transport, and motility supporting oncogenic miR526b- and miR655-induced functions. Gene transcription factor analysis tools were used to show how these miRNAs regulate the expression of each secretory marker. Data extracted from the Human Protein Atlas showed that YWHAB, SFN, and TXNDC12 expression could distinguish early and late-stage breast cancer in various breast cancer subtypes and are associated with poor patient survival. Additionally, immunohistochemistry analysis showed the expression of each marker in breast tumors. A stronger correlation between miRNA clusters and upregulated secretory markers gene expression was found in the luminal A tumor subtype. YWHAB, SFN, and MYL6B are upregulated in breast cancer patient's blood, showing biomarker potential. Of these identified novel miRNA secretory markers, SFN and YWHAB successfully passed all validations and are the best candidates to further investigate their roles in miRNA associated TME regulation. Also, these markers show the potential to serve as blood-based breast cancer biomarkers, especially for luminal-A subtypes.

12.
J Bone Miner Res ; 37(10): 1944-1955, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876037

RESUMO

Osteoarthritis (OA) is associated with extensive upregulation of osteoclastogenesis and subsequent bone breakdown. The CCN family protein connective tissue growth factor (CCN2, also called CCN2) enhances inflammatory cytokine production in OA disease. The cytokine interleukin (IL)-17 is known to induce osteoclastogenesis and bone erosion in arthritic disease. Our retrieval of data from the Gene Expression Omnibus (GEO) data set and clinical tissues exhibited higher CCN2 and IL-17 expression in OA synovial sample than in normal healthy samples. We observed the same phenomenon in synovial tissue from rats with anterior cruciate ligament transaction (ACLT)-elicited OA compared with synovial tissue from control healthy rats. We also found that CCN2 facilitated increases in IL-17 synthesis in human OA synovial fibroblasts (OASFs) and promoted osteoclast formation. CCN2 affected IL-17 production by reducing miR-655 expression through the ILK and Syk signaling cascades. Our findings improve our understanding about the effect of CCN2 in OA pathogenesis and, in particular, IL-17 production and osteoclastogenesis, which may help with the design of more effective OA treatments. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fator de Crescimento do Tecido Conjuntivo , MicroRNAs , Osteoartrite , Animais , Humanos , Ratos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Interleucina-17/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Osteogênese , Membrana Sinovial/patologia
13.
Bioengineered ; 13(2): 2099-2113, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034572

RESUMO

The involvement of certain circular RNAs (circRNAs) in the development of hepatocellular carcinoma (HCC) has been reported. Herein, this study aimed to investigate the function and mechanism of circ_0001955 in HCC tumorigenesis. Expression of circ_0001955, miR-655-3p, and alkaline ceramidase 3 (ACER3) was evaluated by quantitative real-time PCR and Western blot. Cell counting kit-8, colony formation, transwell, tube formation, flow cytometry and tumor xenograft assays were adopted to perform in vitro and in vivo experiments. The direct interaction between miR-655-3p and circ_0001955 or ACER3 was verified using dual-luciferase reporter and RNA immunoprecipitation assays. Circ_0001955 was highly expression in HCC tissues and cells. Functionally, circ_0001955 deletion suppressed HCC tumorigenesis in vitro by suppressing cell growth, metastasis and angiogenesis. Mechanistically, circ_0001955 could competitively sponge miR-655-3p, which targeted ACER3. Besides that, miR-655-3p silencing abolished the anticancer action of circ_0001955 silencing on HCC cells. Moreover, miR-655-3p overexpression inhibited HCC cell oncogenic phenotypes mentioned above, which were attenuated by ACER3 up-regulation. Additionally, circ_0001955 knockdown also impeded HCC growth in a mouse model. In all, this study suggested a novel circ_0001955/miR-655-3p/ACER3 pathway in HCC progression.


Assuntos
Ceramidase Alcalina/biossíntese , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Regulação para Cima , Ceramidase Alcalina/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Circular , RNA Neoplásico/genética
14.
Mol Ther Nucleic Acids ; 27: 293-303, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35024242

RESUMO

Circular RNAs (circRNAs) have been proven to play key roles in the development and progression of various types of cancers. However, there were no reported studies on the roles of circRNA mediator complex subunit 27 (circMED27) in tumors including hepatocellular carcinoma (HCC). In this study, we found that circMED27 was significantly increased in HCC serum and that higher levels of circMED27 were correlated with bad clinical characteristics and poor prognoses of patients with HCC. Furthermore, upregulated circMED27 promoted HCC resistance to lenvatinib. Our mechanistic investigations revealed that circMED27 functions as a competing endogenous RNA (ceRNA) for miR-655-3p to upregulate ubiquitin-specific peptidase 28 (USP28) expression. Thus, we are led to conclude that circMED27 acts as a potential therapeutic target for HCC patients receiving lenvatinib therapy and may represent a promising molecular biomarker for forecasting lenvatinib-resistant HCC.

15.
Bioengineered ; 13(3): 6409-6419, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35220878

RESUMO

Acute lymphocytic leukemia (ALL) is the most common malignant tumor in children with T-cell ALL (T-ALL), accounting for approximately 15% of all cases. Long noncoding RNAs (lncRNAs) are involved in the pathogenesis and progression of T-ALL. The present study aimed to explore the role and mechanism of action of lncRNA EBLN3P in T-ALL. We used quantitative reverse transcription-PCR (qRT-PCR) to determine the expression of lncRNA endogenous bornavirus-like nucleoprotein (EBLN3P), microRNA (miR)-655-3p, and the transcription level of matrix metalloproteinase-9 (MMP-9), and Western blot assay to quantify the protein expression level of cleaved-caspase3, caspase3, proliferating cell nuclear antigen (PCNA), and MMP-9. The potential binding sites between lncRNA EBLN3P and miR-655-3p were predicted using StarBase, and the interaction was further verified by dual-luciferase reporter assay and RNA pull-down assay. The proliferation ability of Jurkat cells was detected using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and their invasion and migration ability using transwell assay. Cell apoptosis was determined using flow cytometry (FCM) assay. The expression of lncRNA EBLN3P was upregulated while that of miR-655-3p was downregulated in human T-ALL cell lines and lncRNA EBLN3P negatively regulated miR-655-3p. LncRNA EBLN3P knockdown significantly inhibited proliferation, invasion, and migration of Jurkat cells and induced their apoptosis. Downregulating miR-655-3p reversed the effects of lncRNA EBLN3P knockdown on Jurkat cells. In conclusion, we confirmed for the first time that lncRNA EBLN3P is dysregulated in T-ALL cell lines, and lncRNA EBLN3P knockdown inhibited the malignant biological behaviors of T-ALL cells by up-regulating miR-655-3p.


Assuntos
MicroRNAs/genética , Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras , RNA Longo não Codificante/genética , Apoptose/genética , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
16.
Bioengineered ; 13(4): 10679-10690, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35473552

RESUMO

Lung adenocarcinoma (LUAD) is a subtype of lung cancer, and therapy remains a great challenge. A growing body of evidence shows that long-chain non-coding RNAs (lncRNAs) play an important role in the occurrence and development of LUAD. This study investigated the roles and mechanisms of action of EBLN3P in LUAD. The bioinformatics software starBase and TargetScan were used to predict the binding sites of the lncRNA endogenous born avirus-like nucleoprotein (EBLN3P) and microRNA (miR)-655-3p in LUAD. The regulatory role of EBLN3P and miR-655-3p in cell proliferation was verified through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay. The binding sites between EBLN3P, miR-655-3p, and B-cell lymphoma-2 (Bcl-2) were assessed using dual-luciferase reporter assay, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Flow cytometry (FCM) was performed to analyze the apoptotic rates of A549 cells after transfection. The results revealed that EBLN3P was upregulated, whereas miR-655-3p was downregulated in LUAD cell lines (A549 and NCI-H23). Bioinformatics analysis and dual-luciferase reporter assays indicated that EBLN3P interacted with miR-655-3p. Knockdown of EBLN3P notably inhibited the bioactivity and induced apoptosis in A549 cells by upregulating miR-655-3p. Mechanistically, miR-655-3p inhibits cell viability and induces apoptosis by inhibiting Bcl-2 expression. The high expression of Bcl-2 reversed the impact of miR-655-3p on the inhibition of cell bioactivity and induction of apoptosis in A549 cells. In conclusion, this study demonstrated that EBLN3P silencing inhibits bioactivity and induces apoptosis via the miR-655-3p/Bcl-2 axis, providing a potential therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma , MicroRNAs , RNA Longo não Codificante , Adenocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/metabolismo
17.
Front Oncol ; 11: 636965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643926

RESUMO

Previous studies have shown that both long intergenic non-coding RNA 00963 (Linc00963) and tripartite motif containing 24 (TRIM24) are activators of the PI3K/AKT pathway, and both are involved in the carcinogenesis and progression of prostate cancer. However, the regulatory mechanisms between Linc00963 and TRIM24 are still unclear. In this study, we aimed to elucidate the underlying relationship between Linc00963 and TRIM24 in castration-resistant prostate cancer (CRPC). We found that TRIM24, an established oncogene in CRPC, was positively correlated with Linc00963 in prostate cancer tissues. In addition, TRIM24 was positively regulated by Lin00963 in CRPC cells. Mechanistically, TRIM24 was the direct target of microRNA-655 (miR-655) in CRPC cells, and Linc00963 could competitively bind miR-655 and upregulate TRIM24 expression. Using gain- and loss-of- function assays and rescue assays, we identified that miR-655 inhibits TRIM24 expression and cell proliferation and colony forming ability in CRPC, and that Linc00963 promotes TRIM24 expression, cell proliferation, and colony forming ability of CRPC cells by directly suppressing miR-655 expression. We further identified that Linc00963 could promote tumor growth of CRPC cells by inhibiting miR-655 and upregulating TRIM24 axis in vivo. Taken together, our study reveals a new mechanism for the Linc00963/miR-655/TRIM24 competing endogenous RNA (ceRNA) network in accelerating cell proliferation in CRPC in vitro and in vivo, and suggests that Linc00963 could be considered a novel therapeutic target for CRPC.

18.
Open Med (Wars) ; 16(1): 931-943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222668

RESUMO

Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB. MALAT1 was upregulated in RB tissues and cells, and it served as a competing endogenous RNA (ceRNA) and inhibited miRNA-655-3p (miR-655-3p) expression, which eventually regulated the expression of miR-655-3p downstream target ATPase Family AAA Domain Containing 2 (ATAD2). The level of ATAD2 significantly increased, while that of miR-655-3p remarkably decreased in RB tissues and cells. MALAT1 depletion inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT), but promoted apoptosis in vitro and blocked xenograft tumor growth in vivo. MALAT1 exerted its oncogenic functions in RB by regulating miR-655-3p/ATAD2 axis.

19.
Gene ; 757: 144932, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32640310

RESUMO

miR-655 is a widely studied non-coding small RNA molecule. miR-655 is down-regulated in at least 15 cancers and up-regulated in acute myeloid leukemia (AML) and breast cancer (BC) cell lines. The expression level of miR-655 is closely related to the prognosis of cancer patients. In addition, we summarize all genes that can be down-regulated by miR-655 in cancer. In breast cancer, we also found the upstream regulatory pathway of miR-655. Here, we systematically analyze biological pathways and molecular functions of the miR-655-related genes. Our results indicate that miR-655-related genes are involved in cancer cell proliferation, migration, invasion, and apoptosis, and various biological processes such as angiogenesis, EMT, and oxidative stress. miR-655 may also affect the efficacy of many drugs through its targeted genes. This review summarizes the related research of miR-655 in various diseases and evaluates its potential application as a molecular marker for diagnosis and prognosis.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/genética , Animais , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
20.
Oncol Lett ; 20(6): 310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33093919

RESUMO

Recently, previous studies have shown that long non-coding RNA (lncRNA) can act as a tumor promoter or inhibitor in the pathogenesis of oral squamous cell carcinoma (OSCC). However, the regulatory mechanism of lncRNA SNHG5 is unknown in OSCC. Therefore, the functional mechanism of lncRNA SNHG5 in OSCC was initially revealed in this study. Here, RT-qPCR and western blot analysis were used to assess mRNA and protein expression. The functional mechanism of SNHG5 was investigated by MTT, Transwell and luciferase reporter assays. The results showed that SNHG5 expression was upregulated in OSCC and promoted the viability, migration and invasion of OSCC cells. In addition, SNHG5 is the sponge of miR-655-3p in OSCC. And miR-655-3p was found to play an inhibitory effect in OSCC by interacting with SNHG5. Moreover, miR-655-3p directly targets FZD4 and negatively regulates its expression in OSCC. Functionally, FZD4 promoted the progression of OSCC by interacting with the SNHG5/miR-655-3p axis. In conclusion, lncRNA SNHG5 promotes cell proliferation, migration and invasion in OSCC by regulating miR-655-3p/FZD4 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA