Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.330
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995657

RESUMO

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Assuntos
Peptídeo Hidrolases , Prurido , Receptor PAR-1 , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Humanos , Camundongos , Peptídeo Hidrolases/metabolismo , Prurido/microbiologia , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia
2.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051369

RESUMO

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Assuntos
Microbioma Gastrointestinal/genética , Genes Bacterianos , Animais , Ácidos e Sais Biliares/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Resistência Microbiana a Medicamentos/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Vida Livre de Germes , Inflamação/patologia , Intestinos/patologia , Masculino , Metaboloma/genética , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Mutação/genética , RNA Ribossômico 16S/genética , Transcrição Gênica
3.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347253

RESUMO

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Assuntos
Ergotioneína , Humanos , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxirredução , Compostos de Sulfidrila , Peso Molecular
4.
Cell ; 185(17): 3263-3277.e15, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35931082

RESUMO

Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Escherichia coli/genética , Microbioma Gastrointestinal/fisiologia , Camundongos , Transgenes
5.
Cell ; 184(8): 2053-2067.e18, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794144

RESUMO

Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal , Transferência Genética Horizontal , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Fezes/microbiologia , Genoma Bacteriano , Humanos , Filogenia , População Rural , Análise de Sequência de DNA , População Urbana , Sequenciamento Completo do Genoma
6.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084341

RESUMO

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Carboidratos da Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiologia , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Óperon , Simbiose
7.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142679

RESUMO

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Assuntos
Doenças Cardiovasculares/sangue , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombose/metabolismo , Animais , Artérias/lesões , Artérias/metabolismo , Artérias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Morte Súbita Cardíaca/patologia , Glutamina/sangue , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolômica/métodos , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/microbiologia , Ativação Plaquetária/genética , Receptores Adrenérgicos alfa/sangue , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangue , Receptores Adrenérgicos beta/genética , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/microbiologia , Acidente Vascular Cerebral/patologia , Trombose/genética , Trombose/microbiologia , Trombose/patologia
8.
Cell ; 180(3): 440-453.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032516

RESUMO

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.


Assuntos
Arabidopsis/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos da radiação , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/efeitos da radiação , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Terapia a Laser/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/efeitos da radiação , Microscopia Confocal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos da radiação , Proteínas Quinases/metabolismo , Proteínas Quinases/efeitos da radiação , Receptores de Reconhecimento de Padrão/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Imagem com Lapso de Tempo
9.
Cell ; 178(5): 1245-1259.e14, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31402174

RESUMO

Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.


Assuntos
Microbiota , Proteínas/metabolismo , Sequência de Aminoácidos , Comunicação Celular , Interações Hospedeiro-Patógeno , Humanos , Metagenoma , Fases de Leitura Aberta/genética , Proteínas/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Alinhamento de Sequência
10.
Annu Rev Biochem ; 87: 621-643, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925260

RESUMO

In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host-microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host-microbe interface and beyond.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Complexo Antígeno L1 Leucocitário/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Elementos de Transição/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Humanos , Imunidade Inata , Ferro/imunologia , Ferro/metabolismo , Complexo Antígeno L1 Leucocitário/genética , Manganês/imunologia , Manganês/metabolismo , Modelos Biológicos , Modelos Moleculares , Níquel/imunologia , Níquel/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Zinco/imunologia , Zinco/metabolismo
11.
Cell ; 175(4): 973-983.e14, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388454

RESUMO

Roots of healthy plants are inhabited by soil-derived bacteria, fungi, and oomycetes that have evolved independently in distinct kingdoms of life. How these microorganisms interact and to what extent those interactions affect plant health are poorly understood. We examined root-associated microbial communities from three Arabidopsis thaliana populations and detected mostly negative correlations between bacteria and filamentous microbial eukaryotes. We established microbial culture collections for reconstitution experiments using germ-free A. thaliana. In plants inoculated with mono- or multi-kingdom synthetic microbial consortia, we observed a profound impact of the bacterial root microbiota on fungal and oomycetal community structure and diversity. We demonstrate that the bacterial microbiota is essential for plant survival and protection against root-derived filamentous eukaryotes. Deconvolution of 2,862 binary bacterial-fungal interactions ex situ, combined with community perturbation experiments in planta, indicate that biocontrol activity of bacterial root commensals is a redundant trait that maintains microbial interkingdom balance for plant health.


Assuntos
Arabidopsis/microbiologia , Consórcios Microbianos , Raízes de Plantas/microbiologia , Arabidopsis/fisiologia , Bactérias/patogenicidade , Fungos/patogenicidade , Simbiose
12.
Cell ; 170(6): 1175-1183.e11, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28867285

RESUMO

We serendipitously discovered that the marine bacterium Vibrio fischeri induces sexual reproduction in one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Although bacteria influence everything from nutrition and metabolism to cell biology and development in eukaryotes, bacterial regulation of eukaryotic mating was unexpected. Here, we show that a single V. fischeri protein, the previously uncharacterized EroS, fully recapitulates the aphrodisiac-like activity of live V. fischeri. EroS is a chondroitin lyase; although its substrate, chondroitin sulfate, was previously thought to be an animal synapomorphy, we demonstrate that S. rosetta produces chondroitin sulfate and thus extend the ancestry of this important glycosaminoglycan to the premetazoan era. Finally, we show that V. fischeri, purified EroS, and other bacterial chondroitin lyases induce S. rosetta mating at environmentally relevant concentrations, suggesting that bacteria likely regulate choanoflagellate mating in nature.


Assuntos
Aliivibrio fischeri/enzimologia , Coanoflagelados/microbiologia , Coanoflagelados/fisiologia , Condroitinases e Condroitina Liases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Coanoflagelados/citologia , Sulfatos de Condroitina/metabolismo , Meiose , Reprodução , Alinhamento de Sequência
13.
EMBO J ; 43(8): 1499-1518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528181

RESUMO

The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1+ macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC. SteC recruits host myosin light chain protein Myl12a and phosphorylates its Ser19 and Thr20 residues. Myl12a phosphorylation results in actin rearrangement, and enhanced migration and invasion of macrophages. SteC is able to utilize a wide range of NTPs other than ATP to phosphorylate Myl12a. We further solved the crystal structure of SteC, which suggests an atypical dimerization-mediated catalytic mechanism. Finally, in vivo data show that SteC-mediated cytoskeleton manipulation is crucial for Salmonella breaching the gut vascular barrier and spreading to target organs.


Assuntos
Cadeias Leves de Miosina , Salmonella enterica , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo , Macrófagos/metabolismo
14.
Immunol Rev ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864582

RESUMO

Autoimmune (or rheumatic) diseases are increasing in prevalence but selecting the best therapy for each patient proceeds in trial-and-error fashion. This strategy can lead to ineffective therapy resulting in irreversible damage and suffering; thus, there is a need to bring the promise of precision medicine to patients with autoimmune disease. While host factors partially determine the therapeutic response to immunosuppressive drugs, these are not routinely used to tailor therapy. Thus, non-host factors likely contribute. Here, we consider the impact of the human gut microbiome in the treatment of autoimmunity. We propose that the gut microbiome can be manipulated to improve therapy and to derive greater benefit from existing therapies. We focus on the mechanisms by which the human gut microbiome impacts treatment response, provide a framework to interrogate these mechanisms, review a case study of a widely-used anti-rheumatic drug, and discuss challenges with studying multiple complex systems: the microbiome, the human immune system, and autoimmune disease. We consider open questions that remain in the field and speculate on the future of drug-microbiome-autoimmune disease interactions. Finally, we present a blue-sky vision for how the microbiome can be used to bring the promise of precision medicine to patients with rheumatic disease.

15.
EMBO J ; 42(9): e112634, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36891678

RESUMO

In response to infection, plants can induce the production of reactive oxygen species (ROS) to restrict pathogen invasion. In turn, adapted pathogens have evolved a counteracting mechanism of enzymatic ROS detoxification, but how it is activated remains elusive. Here, we show that in the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol) this process is initiated by deacetylation of the FolSrpk1 kinase. Upon ROS exposure, Fol decreases FolSrpk1 acetylation on the K304 residue by altering the expression of the acetylation-controlling enzymes. Deacetylated FolSrpk1 disassociates from the cytoplasmic FolAha1 protein, thus enabling its nuclear translocation. Increased accumulation of FolSrpk1 in the nucleus allows for hyperphosphorylation of its phosphorylation target FolSr1 that subsequently enhances transcription of different types of antioxidant enzymes. Secretion of these enzymes removes plant-produced H2 O2 , and enables successful Fol invasion. Deacetylation of FolSrpk1 homologs has a similar function in Botrytis cinerea and likely other fungal pathogens. These findings reveal a conserved mechanism for initiation of ROS detoxification upon plant fungal infection.


Assuntos
Antioxidantes , Fusarium , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia
16.
Immunity ; 48(6): 1245-1257.e9, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29858010

RESUMO

The mammalian gut microbiota provides essential metabolites to the host and promotes the differentiation and accumulation of extrathymically generated regulatory T (pTreg) cells. To explore the impact of these cells on intestinal microbial communities, we assessed the composition of the microbiota in pTreg cell-deficient and -sufficient mice. pTreg cell deficiency led to heightened type 2 immune responses triggered by microbial exposure, which disrupted the niche of border-dwelling bacteria early during colonization. Moreover, impaired pTreg cell generation led to pervasive changes in metabolite profiles, altered features of the intestinal epithelium, and reduced body weight in the presence of commensal microbes. Absence of a single species of bacteria depleted in pTreg cell-deficient animals, Mucispirillum schaedleri, partially accounted for the sequelae of pTreg cell deficiency. These observations suggest that pTreg cells modulate the metabolic function of the intestinal microbiota by restraining immune defense mechanisms that may disrupt a particular bacterial niche.


Assuntos
Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/imunologia , Camundongos
17.
Immunity ; 49(5): 943-957.e9, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30389414

RESUMO

Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Dieta , Microbioma Gastrointestinal , Homeostase , Interleucina-23/metabolismo , Interleucinas/metabolismo , Animais , Aterosclerose/patologia , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Imunofenotipagem , Interleucina-23/deficiência , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/metabolismo , Transdução de Sinais , Interleucina 22
18.
Immunity ; 48(6): 1233-1244.e6, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29858013

RESUMO

Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella co-opts human α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen.


Assuntos
Aderência Bacteriana/fisiologia , Disenteria Bacilar/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Shigella/patogenicidade , alfa-Defensinas , Animais , Humanos
19.
Proc Natl Acad Sci U S A ; 121(10): e2310852121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416678

RESUMO

Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Enterococcus/genética , Antibacterianos/farmacologia , Enterococcus faecium/genética , Enterococcus faecalis/genética , Filogenia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
20.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814867

RESUMO

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Assuntos
Arabidopsis , Epitopos , Solanum lycopersicum , Epitopos/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Arabidopsis/imunologia , Arabidopsis/genética , Genoma Bacteriano , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Bactérias/imunologia , Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/imunologia , Proteínas e Peptídeos de Choque Frio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA