Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Yeast ; 40(10): 443-456, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653687

RESUMO

Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.

2.
Microb Cell Fact ; 22(1): 10, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642733

RESUMO

BACKGROUND: L-cysteine is an essential chemical building block in the pharmaceutical-, cosmetic-, food and agricultural sector. Conventionally, L-cysteine production relies on the conversion of keratinous biomass mediated by hydrochloric acid. Today, fermentative production based on recombinant E. coli, where L-cysteine production is streamlined and facilitated by synthetic plasmid constructs, is an alternative process at industrial scale. However, metabolic stress and the resulting production escape mechanisms in evolving populations are severely limiting factors during industrial biomanufacturing. We emulate high generation numbers typically reached in industrial fermentation processes with Escherichia coli harbouring L-cysteine production plasmid constructs. So far no genotypic and phenotypic alterations in early and late L-cysteine producing E. coli populations have been studied. RESULTS: In a comparative experimental design, the E. coli K12 production strain W3110 and the reduced genome strain MDS42, almost free of insertion sequences, were used as hosts. Data indicates that W3110 populations acquire growth fitness at the expense of L-cysteine productivity within 60 generations, while production in MDS42 populations remains stable. For the first time, the negative impact of predominantly insertion sequence family 3 and 5 transposases on L-cysteine production is reported, by combining differential transcriptome analysis with NGS based deep plasmid sequencing. Furthermore, metabolic clustering of differentially expressed genes supports the hypothesis, that metabolic stress induces rapid propagation of plasmid rearrangements, leading to reduced L-cysteine yields in evolving populations over industrial fermentation time scales. CONCLUSION: The results of this study implicate how selective deletion of insertion sequence families could be a new route for improving industrial L-cysteine or even general amino acid production using recombinant E. coli hosts. Instead of using minimal genome strains, a selective deletion of certain IS families could offer the benefits of adaptive laboratory evolution (ALE) while maintaining enhanced L-cysteine production stability.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Cisteína/metabolismo , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli K12/genética , Fermentação , Estresse Fisiológico , Engenharia Metabólica/métodos
3.
Appl Microbiol Biotechnol ; 107(13): 4323-4335, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37233755

RESUMO

Baculoviruses have very large genomes and previous studies have demonstrated improvements in recombinant protein production and genome stability through the removal of some nonessential sequences. However, recombinant baculovirus expression vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches for generating knockout viruses (KOVs) require several experimental steps to remove the target gene prior to the generation of the virus. In order to optimize rBEV genomes by removing nonessential sequences, more efficient techniques for establishing and evaluating KOVs are required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene targeting to examine the phenotypic impact of disruption of endogenous Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genes. For validation, 13 AcMNPV genes were targeted for disruption and evaluated for the production of GFP and progeny virus - traits that are essential for their use as vectors for recombinant protein production. The assay involves transfection of sgRNA into a Cas9-expressing Sf9 cell line followed by infection with a baculovirus vector carrying the gfp gene under the p10 or p6.9 promoters. This assay represents an efficient strategy for scrutinizing AcMNPV gene function through targeted disruption, and represents a valuable tool for developing an optimized rBEV genome. KEY POINTS: [Formula: see text] A method to scrutinize the essentiality of baculovirus genes was developed. [Formula: see text] The method uses Sf9-Cas9 cells, a targeting plasmid carrying a sgRNA, and a rBEV-GFP. [Formula: see text] The method allows scrutiny by only needing to modify the targeting sgRNA plasmid.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Animais , Spodoptera , Baculoviridae/genética , Células Sf9 , Proteínas Recombinantes/genética
4.
Proc Natl Acad Sci U S A ; 117(12): 6752-6761, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32144140

RESUMO

A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Reprogramação Celular , Cupriavidus necator/genética , Escherichia coli/genética , Pseudomonas putida/genética , Biologia Sintética/métodos , Proliferação de Células , Cromossomos Bacterianos , Cupriavidus necator/metabolismo , Sistemas de Liberação de Medicamentos , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Engenharia Genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Pseudomonas putida/metabolismo , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511505

RESUMO

The global demand for nucleic acid-based vaccines, including plasmid DNA (pDNA) and mRNA vaccines, needs efficient production platforms. However, conventional hosts for plasmid production have encountered challenges related to sequence integrity due to the presence of insertion sequences (ISs). In this study, we explored the potential of a genome-reduced Escherichia coli as a host for pDNA production. This strain had been constructed by removing approximately 23% of the genome which were unessential genes, including the genomic unstable elements. Moreover, the strain exhibits an elevated level of NADPH, a coenzyme known to increase plasmid production according to a mathematical model. We hypothesized that the combination of genome reduction and the abundance of NADPH would significantly enhance pDNA production capabilities. Remarkably, our results confirmed a three-fold increase in pDNA production compared to the widely employed DH5α strain. Furthermore, the genome-reduced strain exhibited heightened sensitivity to various antibiotics, bolstering its potential for large scale industrial pDNA production. These findings suggest the genome-reduced E. coli as an exciting candidate for revolutionizing the pDNA industry, offering unprecedented efficiency and productivity.


Assuntos
Escherichia coli , Vacinas de DNA , Escherichia coli/genética , NADP/genética , Vacinas de DNA/genética , Plasmídeos/genética , DNA
6.
Appl Environ Microbiol ; 88(7): e0247921, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285680

RESUMO

The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can help rectify this deficiency. The technology, however, can only be realistically applied to those species in which high rates of DNA transfer can be achieved. Here, we have developed a number of approaches that overcome this barrier in the autotrophic species Clostridium autoethanogenum by using a mariner-based transposon system. The inherent instability of such systems in the Escherichia coli conjugation donor due to transposition events was counteracted through the incorporation of a conditionally lethal codA marker on the plasmid backbone. Relatively low frequencies of transformation of the plasmid into C. autoethanogenum were circumvented through the use of a plasmid that is conditional for replication coupled with the routine implementation of an Illumina library preparation protocol that eliminates plasmid-based reads. A transposon library was then used to determine the essential genes needed for growth using carbon monoxide as the sole carbon and energy source. IMPORTANCE Although microbial genome sequences are relatively easily determined, assigning gene function remains a bottleneck. Consequently, relatively few genes are well characterized, leaving the function of many as either hypothetical or entirely unknown. High-throughput transposon sequencing can help remedy this deficiency, but is generally only applicable to microbes with efficient DNA transfer procedures. These exclude many microorganisms of importance to humankind either as agents of disease or as industrial process organisms. Here, we developed approaches to facilitate transposon insertion sequencing in the acetogen Clostridium autoethanogenum, a chassis being exploited to convert single-carbon waste gases CO and CO2 into chemicals and fuels at an industrial scale. This allowed the determination of gene essentiality under heterotrophic and autotrophic growth, providing insights into the utilization of CO as a sole carbon and energy source. The strategies implemented are translatable and will allow others to apply transposon insertion sequencing to other microbes where DNA transfer has until now represented a barrier to progress.


Assuntos
Monóxido de Carbono , Clostridium , Processos Autotróficos , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Elementos de DNA Transponíveis , Genoma Bacteriano , Mutagênese Insercional
7.
FEMS Yeast Res ; 22(1)2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35175339

RESUMO

A range of game-changing biodigital and biodesign technologies are coming of age all around us, transforming our world in complex ways that are hard to predict. Not a day goes by without news of how data-centric engineering, algorithm-driven modelling, and biocyber technologies-including the convergence of artificial intelligence, machine learning, automated robotics, quantum computing, and genome editing-will change our world. If we are to be better at expecting the unexpected in the world of wine, we need to gain deeper insights into the potential and limitations of these technological developments and advances along with their promise and perils. This article anticipates how these fast-expanding bioinformational and biodesign toolkits might lead to the creation of synthetic organisms and model systems, and ultimately new understandings of biological complexities could be achieved. A total of four future frontiers in wine yeast research are discussed in this article: the construction of fully synthetic yeast genomes, including minimal genomes; supernumerary pan-genome neochromosomes; synthetic metagenomes; and synthetic yeast communities. These four concepts are at varying stages of development with plenty of technological pitfalls to overcome before such model chromosomes, genomes, strains, and yeast communities could illuminate some of the ill-understood aspects of yeast resilience, fermentation performance, flavour biosynthesis, and ecological interactions in vineyard and winery settings. From a winemaker's perspective, some of these ideas might be considered as far-fetched and, as such, tempting to ignore. However, synthetic biologists know that by exploring these futuristic concepts in the laboratory could well forge new research frontiers to deepen our understanding of the complexities of consistently producing fine wines with different fermentation processes from distinctive viticultural terroirs. As the saying goes in the disruptive technology industry, it take years to create an overnight success. The purpose of this article is neither to glorify any of these concepts as a panacea to all ills nor to crucify them as a danger to winemaking traditions. Rather, this article suggests that these proposed research endeavours deserve due consideration because they are likely to cast new light on the genetic blind spots of wine yeasts, and how they interact as communities in vineyards and wineries. Future-focussed research is, of course, designed to be subject to revision as new data and technologies become available. Successful dislodging of old paradigms with transformative innovations will require open-mindedness and pragmatism, not dogmatism-and this can make for a catch-22 situation in an archetypal traditional industry, such as the wine industry, with its rich territorial and socio-cultural connotations.


Assuntos
Vinho , Inteligência Artificial , Metodologias Computacionais , Fermentação , Teoria Quântica , Saccharomyces cerevisiae/genética , Vinho/análise
8.
J Proteome Res ; 20(2): 1178-1189, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33393786

RESUMO

When the JCVI-syn3.0 genome was designed and implemented in 2016 as the minimal genome of a free-living organism, approximately one-third of the 438 protein-coding genes had no known function. Subsequent refinement into JCVI-syn3A led to inclusion of 16 additional protein-coding genes, including several unknown functions, resulting in an improved growth phenotype. Here, we seek to unveil the biological roles and protein-protein interaction (PPI) networks for these poorly characterized proteins using state-of-the-art deep learning contact-assisted structure prediction, followed by structure-based annotation of functions and PPI predictions. Our pipeline is able to confidently assign functions for many previously unannotated proteins such as putative vitamin transporters, which suggest the importance of nutrient uptake even in a minimized genome. Remarkably, despite the artificial selection of genes in the minimal syn3 genome, our reconstructed PPI network still shows a power law distribution of node degrees typical of naturally evolved bacterial PPI networks. Making use of our framework for combined structure/function/interaction modeling, we are able to identify both fundamental aspects of network biology that are retained in a minimal proteome and additional essential functions not yet recognized among the poorly annotated components of the syn3.0 and syn3A proteomes.


Assuntos
Genes Essenciais , Mapas de Interação de Proteínas , Biologia Computacional , Proteoma/genética
9.
Orig Life Evol Biosph ; 51(3): 215-230, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34694559

RESUMO

A statistical analysis of the variation in contents with the size of the current known smallest genomes, N. deltocephalinicola, C. ruddii, N. equitans, and M. genitalium, enabled the indication of a minimal set of codons capable of naturally building a modern-type free-living unicellular organism in an early stage of evolution. Using a linear regression model, the potential codon distribution in the minimal natural cell was predicted and compared to the composition of the smallest synthetic, JCVI-Syn3.0. The distribution of the molecular weight of potentially coded amino acids was also calculated. The main differences in the features of the minimal natural cell and H. Sapiens genome were analyzed. In this regard, the content percentage of respective amino acids and their polarization charge properties were reported and compared. The fractions of occurring nucleotides were calculated, too. Then, the estimated numbers of codons in a minimal natural cell were related to the expected numbers for random distribution. Shown increase, or decrease in the contents, relative to the calculated random filling was related to the evolutionary preferences, varying with the subsequent eras of the evolution of genetic code.


Assuntos
Uso do Códon , Evolução Molecular , Aminoácidos , Códon/genética , Código Genético
10.
Yi Chuan ; 43(2): 142-159, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724217

RESUMO

Bacteria with the smallest genome contain genes necessary for self-sustaining replication only, giving the organisms advantages to serve as a potential industrial production platform. Many strains with reduced genomes have been constructed, owing to the development of high-throughput DNA sequencing and synthesis technology. This review first describes the concept of minimal genomes, summarizes the relevant research progress of bacterial essential genes, then systematically lists the work related to artificial reduction and synthesis of bacterial genomes, finally discusses the technical obstacles and limitations encountered in the process of designing and constructing reduced genomes, hoping to provide a theoretical basis for the experiment and application of artificially synthesized genomes.


Assuntos
Genes Essenciais , Genoma Bacteriano , Bactérias/genética , Genes Bacterianos , Genoma Bacteriano/genética
11.
Stud Hist Philos Sci ; 85: 127-136, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33966767

RESUMO

This article examines how minimal genome research mobilizes philosophical concepts such as minimality and essentiality. Following a historical approach the article aims to uncover what function this terminology plays and which problems are raised by them. Specifically, four historical moments are examined, linked to the work of Harold J. Morowitz, Mitsuhiro Itaya, Eugene Koonin and Arcady Mushegian, and J. Craig Venter. What this survey shows is a historical shift away from historical questions about life or descriptive questions about specific organisms towards questions that explore biological possibilities: what are possible forms of minimal genomes, regardless of whether they exist in nature? Moreover, it highlights a fundamental ambiguity at work in minimal genome research between a universality claim and a standardization claim: does a minimal genome refer to the minimal gene set for any organism whatsoever? Or does it refer rather to a gene set that will provide stable, robust and predictable behaviour, suited for biotechnological applications? Two diagnoses are proposed for this ambiguity: a philosophical diagnosis of how minimal genome research either misunderstands the ontology of biological entities or philosophically misarticulates scientific practice. Secondly, a historical diagnosis that suggests that this ambiguity is part of a broader shift towards technoscience.


Assuntos
Genes Essenciais , Biologia Sintética , Biotecnologia
12.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32651207

RESUMO

Obligate bacterial endosymbionts are critical to the existence of many eukaryotes. Such endobacteria are usually characterized by reduced genomes and metabolic dependence on the host, which may cause difficulty in isolating them in pure cultures. Family Burkholderiaceae-related endofungal bacteria affiliated with the Mycoavidus-Glomeribacter clade can be associated with the fungal subphyla Mortierellomycotina and Glomeromycotina. In this study, a cultivable endosymbiotic bacterium, Mycoavidus sp. strain B2-EB, present in the fungal host Mortierella parvispora was obtained successfully. The B2-EB genome (1.88 Mb) represents the smallest genome among the endofungal bacterium Mycoavidus cysteinexigens (2.64-2.80 Mb) of Mortierella elongata and the uncultured endosymbiont "Candidatus Glomeribacter gigasporarum" (1.37 to 2.36 Mb) of arbuscular mycorrhizal fungi. Despite a reduction in genome size, strain B2-EB displays a high genome completeness, suggesting a nondegenerative reduction in the B2-EB genome. Compared with a large proportion of transposable elements (TEs) in other known Mycoavidus genomes (7.2 to 11.5% of the total genome length), TEs accounted for only 2.4% of the B2-EB genome. This pattern, together with a high proportion of single-copy genes in the B2-EB genome, suggests that the B2-EB genome reached a state of relative evolutionary stability. These results represent the most streamlined structure among the cultivable endofungal bacteria and suggest the minimal genome features required by both an endofungal lifestyle and artificial culture. This study allows us to understand the genome evolution of Burkholderiaceae-related endosymbionts and to elucidate microbiological interactions.IMPORTANCE This study attempted the isolation of a novel endobacterium, Mycoavidus sp. B2-EB (JCM 33615), harbored in the fungal host Mortierella parvispora E1425 (JCM 39028). We report the complete genome sequence of this strain, which possesses a reduced genome size with relatively high genome completeness and a streamlined genome structure. The information indicates the minimal genomic features required by both the endofungal lifestyle and artificial cultivation, which furthers our understanding of genome reduction in fungal endosymbionts and extends the culture resources for biotechnological development on engineering synthetic microbiomes.


Assuntos
Burkholderiaceae/genética , Genoma Bacteriano , Mortierella/patogenicidade , Simbiose , Genômica
13.
Chembiochem ; 20(20): 2535-2545, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31177625

RESUMO

One of the primary challenges facing synthetic biology is reconstituting a living system from its component parts. A particularly difficult landmark is reconstituting a self-organizing system that can undergo autonomous chromosome compaction, segregation, and cell division. Here, we discuss how the syn3.0 minimal genome can inform us of the core self-organizing principles of a living cell and how these self-organizing processes can be built from the bottom up. The review underscores the importance of fundamental biology in rebuilding life from its molecular constituents.


Assuntos
Células Artificiais/citologia , Divisão Celular , Cromossomos , Biologia Sintética
14.
Proc Natl Acad Sci U S A ; 112(34): 10810-5, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261351

RESUMO

Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Ensaios de Triagem em Larga Escala , Metaboloma , Proteoma , Biologia de Sistemas , Buchnera/genética , Buchnera/metabolismo , Simulação por Computador , Conjuntos de Dados como Assunto , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Biológicos , Família Multigênica , Mycoplasma genitalium/genética , Mycoplasma genitalium/metabolismo , Transcriptoma
15.
J Bacteriol ; 199(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847919

RESUMO

The study of the minimum set of genes required to sustain life is a fundamental question in biological research. Recent studies on bacterial essential genes suggested that between 350 and 700 genes are essential to support autonomous bacterial cell growth. Essential genes are of interest as potential new antimicrobial drug targets; hence, our aim was to identify the essential genome of the cystic fibrosis (CF) isolate Burkholderia cenocepacia H111. Using a transposon sequencing (Tn-Seq) approach, we identified essential genes required for growth in rich medium under aerobic and microoxic conditions as well as in a defined minimal medium with citrate as a sole carbon source. Our analysis suggests that 398 genes are required for autonomous growth in rich medium, a number that represents only around 5% of the predicted genes of this bacterium. Five hundred twenty-six genes were required to support growth in minimal medium, and 434 genes were essential under microoxic conditions (0.5% O2). A comparison of these data sets identified 339 genes that represent the minimal set of essential genes required for growth under all conditions tested and can be considered the core essential genome of B. cenocepacia H111. The majority of essential genes were found to be located on chromosome 1, and few such genes were located on chromosome 2, where most of them were clustered in one region. This gene cluster is fully conserved in all Burkholderia species but is present on chromosome 1 in members of the closely related genus Ralstonia, suggesting that the transfer of these essential genes to chromosome 2 in a common ancestor contributed toward the separation of the two genera.IMPORTANCE Transposon sequencing (Tn-Seq) is a powerful method used to identify genes that are essential for autonomous growth under various conditions. In this study, we have identified a set of "core essential genes" that are required for growth under multiple conditions, and these genes represent potential antimicrobial targets. We also identified genes specifically required for growth under low-oxygen and nutrient-limited environments. We generated conditional mutants to verify the results of our Tn-Seq analysis and demonstrate that one of the identified genes was not essential per se but was an artifact of the construction of the mutant library. We also present verified examples of genes that were not truly essential but, when inactivated, showed a growth defect. These examples have identified so-far-underestimated shortcomings of this powerful method.


Assuntos
Burkholderia cenocepacia/genética , Genes Bacterianos , Genes Essenciais , Genoma Bacteriano , Burkholderia cenocepacia/crescimento & desenvolvimento , Burkholderia cenocepacia/metabolismo , Meios de Cultura/química , Fibrose Cística/microbiologia , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Mutação , Oxigênio/metabolismo
16.
Crit Rev Biotechnol ; 37(3): 277-286, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26863154

RESUMO

DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Recombinação Genética/genética , Biologia Sintética/métodos , Genoma Bacteriano/genética , Peso Molecular
17.
Mol Syst Biol ; 11(1): 780, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609650

RESUMO

Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome-reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non-coding RNAs (ncRNAs) non-overlapping with essential genes is 5% higher than of non-transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non-coding regions, thus changing the focus when aiming to define the minimal essential genome.


Assuntos
DNA Bacteriano/genética , Genoma Bacteriano , Mycoplasma pneumoniae/genética , Fases de Leitura Aberta , RNA não Traduzido/genética , Genes Essenciais , Conformação Proteica , Análise de Sequência de DNA , Transcrição Gênica
18.
Trends Biotechnol ; 42(8): 1048-1063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38423803

RESUMO

Advances in systems and synthetic biology have propelled the construction of reduced bacterial genomes. Genome reduction was initially focused on exploring properties of minimal genomes, but more recently it has been deployed as an engineering strategy to enhance strain performance. This review provides the latest updates on reduced genomes, focusing on dual-track approaches of top-down reduction and bottom-up synthesis for their construction. Using cases from studies that are based on established industrial workhorse strains, we discuss the construction of a series of synthetic phenotypes that are candidates for biotechnological applications. Finally, we address the possible uses of reduced genomes for biotechnological applications and the needed future research directions that may ultimately lead to the total synthesis of rationally designed genomes.


Assuntos
Genoma Bacteriano , Biologia Sintética , Biologia Sintética/métodos , Genoma Bacteriano/genética , Biotecnologia/métodos , Engenharia Genética/métodos , Engenharia Metabólica/métodos , Bactérias/genética , Bactérias/metabolismo
19.
Genes Genet Syst ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39135235

RESUMO

Mycoplasma, solely culturable bacteria with the smallest genome, is an important organism to understand the minimal form of life. Mutagenesis using mutagens is a useful methodology for understanding the essential regions of genomic information. Ultraviolet light and trimethyl psoralen are mutagens known to induce various mutations; the latter is reported to specifically induce deletions in nematodes. However, their mutagenic effects on mycoplasma are not known. Here, we exposed Metamycoplasma salivarium to ultraviolet (UV) light or trimethyl psoralen and UV as mutagens, and analyzed the mutational pattern after several rounds of serial cultivation ranging from 34 to 56 for different lineages. Our results showed that more deletions, but fewer point mutations, were induced with TMP and UV-A than with UV alone, indicating the usefulness of TMP in inducing deletions. In addition, we compared our results with mutational data from other studies, which suggested that both TMP-UVA and UV exposure induced point mutations that were highly biased toward C to T and G to A transitions. These data provide useful basic knowledge for mutational studies on M. salivarium.

20.
Curr Res Struct Biol ; 7: 100121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221989

RESUMO

A lattice-based method is presented for creating 3D models of entire bacterial nucleoids integrating ultrastructural information cryoelectron tomography, genomic and proteomic data, and experimental atomic structures of biomolecules and assemblies. The method is used to generate models of the minimal genome bacterium JCVI-Syn3A, producing a series of models that test hypotheses about transcription, condensation, and overall distribution of the genome. Lattice models are also used to generate atomic models of an entire JCVI-Syn3A cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA