Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2208649119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191230

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.


Assuntos
Drosophila , Doenças Neurodegenerativas , Regiões 5' não Traduzidas , Animais , Animais Geneticamente Modificados , Drosophila/genética , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Leucina/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas de Ligação a RNA/genética , Expansão das Repetições de Trinucleotídeos/genética
2.
Am J Physiol Heart Circ Physiol ; 326(3): H548-H562, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180451

RESUMO

This study investigated cardiac stress and mitochondrial oxidative phosphorylation (OxPhos) in human donation after circulatory death (DCD) hearts regarding warm ischemic time (WIT) and subsequent cold storage and compared them with that of human brain death donor (DBD) hearts. A total of 24 human hearts were procured for the research study-6 in the DBD group and 18 in the DCD group. DCD group was divided into three groups (n = 6) based on different WITs (20, 40, and 60 min). All hearts received del Nido cardioplegia before being placed in normal saline cold storage for 6 h. Left ventricular biopsies were performed at hours 0, 2, 4, and 6. Cardiac stress [nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits: 47-kDa protein of phagocyte oxidase (p47phox), 91-kDa glycoprotein of phagocyte oxidase (gp91phox)] and mitochondrial oxidative phosphorylation [OxPhos, complex I (NADH dehydrogenase) subunit of ETC (CI)-complex V (ATP synthase) subunit of ETC (CV)] proteins were measured in cardiac tissue and mitochondria respectively. Modulation of cardiac stress and mitochondrial dysfunction were observed in both DCD and DBD hearts. However, DCD hearts suffered more cardiac stress (overexpressed NADPH oxidase subunits) and diminished mitochondrial OxPhos than DBD hearts. The severity of cardiac stress and impaired oxidative phosphorylation in DCD hearts correlated with the longer WIT and subsequent cold storage time. More drastic changes were evident in DCD hearts with a WIT of 60 min or more. Activation of NADPH oxidase via overproduction of p47phox and gp91phox proteins in cardiac tissue may be responsible for cardiac stress leading to diminished mitochondrial oxidative phosphorylation. These protein changes can be used as biomarkers for myocardium damage and might help assess DCD and DBD heart transplant suitability.NEW & NOTEWORTHY First human DCD heart research studied cardiac stress and mitochondrial dysfunction concerning WIT and the efficacy of del Nido cardioplegia as an organ procurement solution and subsequent cold storage. Mild to moderate cardiac stress and mitochondrial dysfunction were noticed in DCD hearts with WIT 20 and 40 min and cold storage for 4 and 2 h, respectively. These changes can serve as biomarkers, allowing interventions to preserve mitochondria and extend WIT in DCD hearts.


Assuntos
Transplante de Coração , Doenças Mitocondriais , Humanos , Morte Encefálica , Fosforilação Oxidativa , Doadores de Tecidos , NADPH Oxidases , Biomarcadores , Oxirredutases , Morte , Estudos Retrospectivos
3.
J Transl Med ; 22(1): 535, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840216

RESUMO

BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.


Assuntos
Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mitocôndrias , NF-kappa B , Fosforilação Oxidativa , Síndrome do Desconforto Respiratório , Receptores de Esfingosina-1-Fosfato , Animais , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Inflamação/patologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores
4.
Mol Pharm ; 21(3): 1526-1536, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379524

RESUMO

Tumoral thermal defense mechanisms considerably attenuate the therapeutic outcomes of mild-temperature photothermal therapy (PTT). Thus, developing a simple, efficient, and universal therapeutic strategy to sensitize mild-temperature PTT is desirable. Herein, we report self-delivery nanomedicines ACy NPs comprising a near-infrared (NIR) photothermal agent (Cypate), mitochondrial oxidative phosphorylation inhibitor (ATO), and distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000), which have a high drug-loading efficiency that can reverse tumoral thermal resistance, thereby increasing mild-temperature PTT efficacy. ACy NPs achieved targeted tumor accumulation and performed NIR fluorescence imaging capability in vivo to guide tumor PTT for optimized therapeutic outcomes. The released ATO reduced intracellular ATP levels to downregulate multiple heat shock proteins (including HSP70 and HSP90) before PTT, which reversed the thermal resistance of tumor cells, contributing to the excellent results of mild-temperature PTT in vitro and in vivo. Therefore, this study provides a simple, biosafe, advanced, and universal heat shock protein-blocking strategy for tumor PTT.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Nanomedicina , Fototerapia/métodos , Temperatura , Hipertermia Induzida/métodos , Neoplasias/patologia , Linhagem Celular Tumoral
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 597-606, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404179

RESUMO

The aryl hydrocarbon receptor (AHR) has been identified as a significant driver of tumorigenesis. However, its clinical significance in acute myeloid leukemia (AML) remains largely unclear. In this study, RNA-Seq data from AML patients (bone marrow samples from 173 newly diagnosed AML patients) obtained from the TCGA database, and normal human RNA-Seq data (bone marrow samples from 70 healthy individuals) obtained from the GTEX database are downloaded for external validation and complementarity. The data analysis reveals that the AHR signaling pathway is activated in AML patients. Furthermore, there is a correlation between the expressions of AHR and mitochondrial oxidative phosphorylation genes. In vitro experiments show that enhancing AHR expression in AML cells increases mitochondrial oxidative phosphorylation and induces resistance to cytarabine. Conversely, reducing AHR expression in AML cells decreases cytarabine resistance. These findings deepen our understanding of the AHR signaling pathway's involvement in AML.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacologia , Fosforilação Oxidativa , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
6.
Gastroenterology ; 163(1): 239-256, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461826

RESUMO

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Assuntos
Pâncreas Exócrino , Pancreatite Crônica , Células Acinares/patologia , Animais , Estrogênios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Pâncreas/patologia , Pâncreas Exócrino/metabolismo , Pancreatite Crônica/patologia
7.
Cell Physiol Biochem ; 57(6): 426-451, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967151

RESUMO

BACKGROUND/AIMS: Currently, it is proven that the cellular metabolism of nitric oxide is necessary to maintain optimal health and adaptation of the organism to the impact of various environmental factors. The aim of this work was to reveal the biological role of nitric oxide, its metabolic changes, and its mechanism of action in tissues under hypoxia, as well as the possibility of tissue metabolism correction through NO-dependent systems under the influence of Krebs cycle intermediates. METHODS: A systematic assessment of the effect of succinate (SC, 50 mg/kg b.w.) and α-ketoglutarate (KGL, 50 mg/kg b.w.) in the regulation of oxygendependent processes in rats (mitochondrial oxidative phosphorylation, microsomal oxidation, intensity of lipid peroxidation processes, and the state of the antioxidant defense system) depending on functional changes in nitric oxide production during hypoxia was evaluated. The state of the nitric oxide system was estimated spectrophotometrically by determination of the concentration of its stable nitrite anion metabolite (NO2 -). The levels of catecholamines were estimated from the content of epinephrine and norepinephrine using the differentially fluorescent method. The activity of cytochrome P450-dependent aminopyrine-N-demethylase was determined with the Nash reagent. RESULTS: Tissue hypoxia and metabolic disorders caused by this condition through changes in the content of catecholamines (epinephrine, norepinephrine, dopamine, DOPA) as well as the cholinesterase-related system (acetylcholine content and acetylcholinesterase activity) were the studied experimental parameters under acute hypoxia (AH, 7% O2 in N2, 30 min). The activation of lipid peroxidation and oxidatively modified proteins and an increase in the epinephrine content in AH are associated with an increased role of SC and a decrease in KGL as substrates of oxidation in mitochondria. A more pronounced effect of exogenous KGL, compared to SC, on the content of nitrite anion as a stable metabolite of nitric oxide in the liver under acute hypoxia against the background of a decrease in the intensity of lipid peroxidation processes was revealed. The activation of SC-dependent mitochondrial oxidative processes caused by AH was found to decrease in animals after an intermittent hypoxia training (IHT) course. IHT (7% O2 in N2, 15-min, 5 times daily, 14 days) prevented the activation of oxidative stress in tissues and blood after the AH impact and increased the efficiency of energy-related reactions in the functioning of hepatic mitochondria through increased oxidation of KGL. CONCLUSION: The studied effects of adaptation are mediated by an increase in the role of NO-dependent mechanisms, as assessed by changes in the pool of nitrates, nitrites, carbamides, and total polyamines.


Assuntos
Ciclo do Ácido Cítrico , Óxido Nítrico , Ratos , Animais , Ratos Wistar , Nitritos , Acetilcolinesterase/metabolismo , Hipóxia/metabolismo , Norepinefrina , Epinefrina , Catecolaminas , Oxigênio
8.
J Transl Med ; 21(1): 876, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041179

RESUMO

BACKGROUND: Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. METHODS: Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. RESULTS: Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. CONCLUSION: Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Tigeciclina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular , Células Neoplásicas Circulantes/metabolismo , Proliferação de Células/genética , Células Hep G2 , Mitocôndrias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Apoptose , Regulação Neoplásica da Expressão Gênica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/farmacologia
9.
Cell Mol Life Sci ; 79(6): 301, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35588018

RESUMO

Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (MÏ´) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human MÏ´s exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated MÏ´s nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of MÏ´s by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated MÏ´s, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated MÏ´s was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human MÏ´s as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated MÏ´ hyperactivation. IRAK4i therapy counteracts MÏ´ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human MÏ´s. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Animais , Células HEK293 , Humanos , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo
10.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108242

RESUMO

One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.


Assuntos
Carcinoma , Fosforilação Oxidativa , Humanos , Glicólise , Mitocôndrias/metabolismo , Transformação Celular Neoplásica/metabolismo , Carcinoma/metabolismo
11.
Cell Mol Life Sci ; 78(23): 7693-7707, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34705053

RESUMO

Recent studies have shown the significance of metabolic reprogramming in immune and stromal cell function. Yet, the metabolic reconfiguration of RA macrophages (MΦs) is incompletely understood during active disease and in crosstalk with other cell types in experimental arthritis. This study elucidates a distinct regulation of glycolysis and oxidative phosphorylation in RA MΦs compared to fibroblast (FLS), although PPP (Pentose Phosphate pathway) is similarly reconfigured in both cell types. 2-DG treatment showed a more robust impact on impairing the RA M1 MΦ-mediated inflammatory phenotype than IACS-010759 (IACS, complexli), by reversing ERK, AKT and STAT1 signaling, IRF8/3 transcription and CCL2 or CCL5 secretion. This broader inhibitory effect of 2-DG therapy on RA M1 MΦs was linked to dysregulation of glycolysis (GLUT1, PFKFB3, LDHA, lactate) and oxidative PPP (NADP conversion to NADPH), while both compounds were ineffective on oxidative phosphorylation. Distinctly, in RA FLS, 2-DG and IACS therapies constrained LPS/IFNγ-induced AKT and JNK signaling, IRF5/7 and fibrokine expression. Disruption of RA FLS metabolic rewiring by 2-DG or IACS therapy was accompanied by a reduction of glycolysis (HIF1α, PFKFB3) and suppression of citrate or succinate buildup. We found that 2-DG therapy mitigated CIA pathology by intercepting joint F480+iNOS+MΦ, Vimentin+ fibroblast and CD3+T cell trafficking along with downregulation of IRFs and glycolytic intermediates. Surprisingly, IACS treatment was inconsequential on CIA swelling, cell infiltration, M1 and Th1/Th17 cytokines (IFN-γ/IL-17) and joint glycolytic mediators. Collectively, our results indicate that blockade of glycolysis is more effective than inhibition of complex 1 in CIA, in part due to its effectiveness on the MΦ inflammatory phenotype.


Assuntos
Artrite Reumatoide/fisiopatologia , Desoxiglucose/farmacologia , Fibroblastos/imunologia , Glicólise , Inflamação/prevenção & controle , Macrófagos/imunologia , Células Th17/imunologia , Animais , Antimetabólitos/farmacologia , Artrite Experimental/fisiopatologia , Movimento Celular , Citocinas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos DBA , Via de Pentose Fosfato , Fenótipo
12.
Ecotoxicol Environ Saf ; 231: 113208, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051759

RESUMO

Cadmium (Cd) is a highly toxic heavy metal in our living environment. Hematopoietic stem cells (HSC) are ancestors for all blood cells. Therefore understanding the impact of Cd on HSC is significant for public health. The aim of this study was to investigate the impact of Cd2+ on energy metabolism of HSC and its involvement in hematopoiesis. Wild-type C57BL/6 mice were treated with 10 ppm of Cd2+ via drinking water for 3 months, and thereafter glycolysis and mitochondrial (MT) oxidative phosphorylation (OXPHOS) of HSC in the bone marrow (BM) and their impact on hematopoiesis were evaluated. After Cd2+ treatment, HSC had reduced lactate dehydrogenase (LDH) activity and lactate production while having increased pyruvate dehydrogenase (PDH) activity, MT membrane potential, ATP production, oxygen (O2) consumption and reactive oxygen species (ROS), indicating that Cd2+ switched the pattern of energy metabolism from glycolysis to OXPHOS in HSC. Moreover, Cd2+ switch of HSC energy metabolism was critically dependent on Wnt5a/Cdc42/calcium (Ca2+) signaling triggered by a direct action of Cd2+ on HSC. To test the biological significance of Cd2+ impact on HSC energy metabolism, HSC were intervened for Ca2+, OXPHOS, or ROS in vitro, and thereafter the HSC were transplanted into lethally irradiated recipients to reconstitute the immune system; the transplantation assay indicated that Ca2+-dependent MT OXPHOS dominated the skewed myelopoiesis of HSC by Cd2+ exposure. Collectively, we revealed that Cd2+ exposure activated Wnt5a/Cdc42/Ca2+ signaling to reprogram the energy metabolism of HSC to drive myelopoiesis at the expense of lymphopoiesis.


Assuntos
Cádmio , Mielopoese , Animais , Cádmio/toxicidade , Células-Tronco Hematopoéticas , Linfopoese , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL
13.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430571

RESUMO

Hypoxic stress occurs in various physiological and pathological states, such as aging, disease, or high-altitude exposure, all of which pose a challenge to many organs in the body, necessitating adaptation. However, the exact mechanisms by which hypoxia affects advanced brain function (learning and memory skills in particular) remain unclear. In this study, we investigated the effects of hypoxic stress on hippocampal function. Specifically, we studied the effects of the dysfunction of mitochondrial oxidative phosphorylation using global proteomics. First, we found that hypoxic stress impaired cognitive and motor abilities, whereas it caused no substantial changes in the brain morphology or structure of mice. Second, bioinformatics analysis indicated that hypoxia affected the expression of 516 proteins, of which 71.1% were upregulated and 28.5% were downregulated. We demonstrated that mitochondrial function was altered and manifested as a decrease in NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 expression, accompanied by increased reactive oxygen species generation, resulting in further neuronal injury. These results may provide some new insights into how hypoxic stress alters hippocampal function via the dysfunction of mitochondrial oxidative phosphorylation.


Assuntos
Mitocôndrias , Proteômica , Camundongos , Animais , Mitocôndrias/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , Neurônios/metabolismo
14.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887308

RESUMO

(1) The cardio-reno-metabolic benefits of the SGLT2 inhibitors canagliflozin (cana), dapagliflozin (dapa), ertugliflozin (ertu), and empagliflozin (empa) have been demonstrated, but it remains unclear whether they exert different off-target effects influencing clinical profiles. (2) We aimed to investigate the effects of SGLT2 inhibitors on mitochondrial function, cellular glucose-uptake (GU), and metabolic pathways in human-umbilical-vein endothelial cells (HUVECs). (3) At 100 µM (supra-pharmacological concentration), cana decreased ECAR by 45% and inhibited GU (IC5o: 14 µM). At 100 µM and 10 µM (pharmacological concentration), cana increased the ADP/ATP ratio, whereas dapa and ertu (3, 10 µM, about 10× the pharmacological concentration) showed no effect. Cana (100 µM) decreased the oxygen consumption rate (OCR) by 60%, while dapa decreased it by 7%, and ertu and empa (all 100 µM) had no significant effect. Cana (100 µM) inhibited GLUT1, but did not significantly affect GLUTs' expression levels. Cana (100 µM) treatment reduced glycolysis, elevated the amino acids supplying the tricarboxylic-acid cycle, and significantly increased purine/pyrimidine-pathway metabolites, in contrast to dapa (3 µM) and ertu (10 µM). (4) The results confirmed cana´s inhibition of mitochondrial activity and GU at supra-pharmacological and pharmacological concentrations, whereas the dapa, ertu, and empa did not show effects even at supra-pharmacological concentrations. At supra-pharmacological concentrations, cana (but not dapa or ertu) affected multiple cellular pathways and inhibited GLUT1.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Compostos Benzidrílicos/farmacologia , Canagliflozina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Endoteliais , Glucose , Transportador de Glucose Tipo 1 , Humanos , Mitocôndrias , Fosforilação Oxidativa , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
15.
Exp Physiol ; 106(1): 290-301, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627238

RESUMO

NEW FINDINGS: What is the central question of this study? Heat acclimation increases tolerance to exercise performed in the heat and may improve maximal oxygen uptake (VO2 max) and performance in temperate environments. However, it is unknown if HA affects the expression of proteins related to mitochondrial biogenesis and oxidative capacity in skeletal muscle. What is the main finding and its importance? We showed that heat acclimation increased VO2 max in a temperate environment but did not change markers of mitochondrial biogenesis and oxidative phosphorylation in the skeletal muscle. ABSTRACT: Heat acclimation (HA) increases tolerance to exercise performed in the heat and may improve maximal oxygen uptake ( V̇O2max ) in temperate environments. However, it is unknown if HA affects the expression of proteins related to mitochondrial biogenesis and oxidative capacity in skeletal muscle. The purpose of this study was to investigate the effect of HA on skeletal muscle markers of mitochondrial biogenesis and oxidative phosphorylation in recreationally trained adults. Thirteen (7 males and 6 females) individuals underwent 10 days of HA. Participants performed two 45 min bouts of exercise (walking at 30-40% maximal velocity at 3% grade) with 10 min rest per session in a hot environment (∼42°C and 30-50% relative humidity). V̇O2max , ventilatory thresholds (VT), and protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM), calcium/calmodulin-dependent protein kinase (CaMK), electron transport chain (ETC) complexes I-IV, and heat shock protein 72 (Hsp72) in skeletal muscle were measured pre- and post-HA. Comparing day 1 to day 10, HA was confirmed by lower resting core temperature (Tcore ) (P = 0.026), final Tcore (P < 0.0001), mean heart rate (HR) (P = 0.002), final HR (P = 0.003), mean ratings of perceived exertion (RPE) (P = 0.026) and final RPE (P = 0.028). Pre- to post-HA V̇O2max (P = 0.045) increased but VT1 (P = 0.263) and VT2 (P = 0.239) were unchanged. Hsp72 (P = 0.007) increased, but skeletal muscle protein expression (PGC-1α, P = 0.119; TFAM, P = 0.763; CaMK, P = 0.19; ETC I, P = 0.629; ETC II, P = 0.724; ETC III, P = 0.206; ETC IV, P = 0.496) were not affected with HA. HA during low-intensity exercise increased V̇O2max in a temperate environment and Hsp72 but it did not affect markers of mitochondrial biogenesis and oxidative phosphorylation in the skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Proteínas de Choque Térmico HSP72/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Humanos , Biogênese de Organelas , Consumo de Oxigênio/fisiologia
16.
Part Fibre Toxicol ; 18(1): 19, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985555

RESUMO

BACKGROUND: Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological processes, and the epidemiological study has indicated a positive association between PM exposure and the increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation of megakaryocytes upon PM treatment. RESULTS: The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS) process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle size, but independent of sampling filters. CONCLUSION: The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.


Assuntos
Megacariócitos , Material Particulado/toxicidade , Trombopoese , Plaquetas , Fosforilação Oxidativa
17.
Adv Exp Med Biol ; 1261: 239-248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33783747

RESUMO

Astaxanthin is a carotenoid that has potent protective effects on diabetic kidney disease (DKD) in diabetic mice models. DNA microarray study clearly demonstrated the involvement of mitochondrial oxidative phosphorylation pathway in the renal glomerular cells of diabetic mice and also showed that the expression of upregulated genes associated with this pathway was decreased by the treatment with astaxanthin. Proteomic analysis confirmed that the increases of 4-hydroxy-2-nonenal (HNE)- and Nε-(hexanonyl)lysine (HEL)-modified proteins were inhibited by the treatment with astaxanthin. These results demonstrated that astaxanthin exerts a protective effect against hyperglycemia-induced DKD by attenuating mitochondrial oxidative stress and subsequent cellular dysfunction.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Rim , Camundongos , Estresse Oxidativo , Proteômica , Xantofilas
18.
Int J Mol Sci ; 22(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063207

RESUMO

Recent studies have implicated mitochondrial disruption in podocyte dysfunction, which is a characteristic feature of primary and diabetic glomerular diseases. However, the mechanisms by which primary mitochondrial dysfunction in podocytes affects glomerular renal diseases are currently unknown. To investigate the role of mitochondrial oxidative phosphorylation (OxPhos) in podocyte dysfunction, glomerular function was examined in mice carrying a loss of function mutation of the gene encoding CR6-interacting factor-1 (CRIF1), which is essential for intramitochondrial production and the subsequent insertion of OxPhos polypeptides into the inner mitochondrial membrane. Homozygotic deficiency of CRIF1 in podocytes resulted in profound and progressive albuminuria from 3 weeks of age; the CRIF1-deficient mice also developed glomerular and tubulointerstitial lesions by 10 weeks of age. Furthermore, marked glomerular sclerosis and interstitial fibrosis were observed in homozygous CRIF1-deficient mice at 20 weeks of age. In cultured mouse podocytes, loss of CRIF1 resulted in OxPhos dysfunction and marked loss or abnormal aggregation of F-actin. These findings indicate that the OxPhos status determines the integrity of podocytes and their ability to maintain a tight barrier and control albuminuria. Analyses of the glomerular function of the podocyte-specific primary OxPhos dysfunction model mice demonstrate a link between podocyte mitochondrial dysfunction, progressive glomerular sclerosis, and tubulointerstitial diseases.


Assuntos
Albuminúria/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Mitocôndrias/metabolismo , Podócitos/metabolismo , Esclerose/metabolismo , Albuminúria/genética , Albuminúria/patologia , Animais , Proteínas de Ciclo Celular/genética , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Rim/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Peptídeos/metabolismo , Esclerose/genética , Esclerose/patologia
19.
Cardiovasc Drugs Ther ; 34(6): 799-811, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32458321

RESUMO

PURPOSE: Oxidative stress causes mitochondrial dysfunction in myocardial ischaemia/reperfusion (I/R) as well as in obesity. Mitochondrial depolarization triggers mitophagy to degrade damaged mitochondria, a process important for quality control. The aims of this study were to evaluate (i) the effect of I/R on mitochondrial oxidative phosphorylation and its temporal relationship with mitophagy in hearts from obese rats and their age-matched controls, and (ii) the role of oxidative stress in these processes using melatonin, a free radical scavenger. METHODS: Male Wistar rats were divided into 4 groups: control (normal diet ± melatonin) and high-fat sucrose diet (HFSD ± melatonin). Rats received melatonin orally (10 mg/kg/day). After 16 weeks, hearts were removed and subjected to 40-min stabilization, and 25-min global ischaemia/10-min reperfusion for preparation of mitochondria. Mitochondrial oxidative phosphorylation was measured polarographically. Western blotting was used for evaluation of PINK1, Parkin, p62/SQSTM1 (p62) and TOM 70. Infarct size was measured using tetrazolium staining. RESULTS: Ischaemia and reperfusion respectively reduced and increased mitochondrial QO2 (state 3) and the ox-phos rate in both control and HFSD mitochondria, showing no major changes between the groups, while melatonin pretreatment had little effect. p62 as indicator of mitophagic flux showed up- and downregulation of mitophagy by ischaemia and reperfusion respectively, with melatonin having no significant effect. Melatonin treatment caused a significant reduction in infarct size in hearts from both control and diet groups. CONCLUSIONS: The results suggest that I/R (i) affects mitochondria from control and HFSD hearts similarly and (ii) melatonin-induced cardioprotection is not associated with reversal of mitochondrial dysfunction or changes in the PINK1/Parkin pathway.


Assuntos
Antioxidantes/farmacologia , Dieta Hiperlipídica , Melatonina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Sacarose Alimentar , Modelos Animais de Doenças , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Obesidade/metabolismo , Obesidade/patologia , Proteínas Quinases/metabolismo , Ratos Wistar , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitina-Proteína Ligases/metabolismo
20.
Toxicol Mech Methods ; 30(4): 275-283, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948334

RESUMO

Type 2 diabetes (T2D) is characterized by defects in insulin action to target tissues, resulting in hyperglycemia, insulin resistance, and mitochondrial dysfunction. The eye is one of the organs susceptible to T2D, but knowledge regarding mitochondrial dysfunction in the eyes after hyperglycemia and T2D is based mainly on epidemiological evidence, with little experimental data. Persistent organic pollutants (POPs) are known as endocrine-disrupting chemicals and are associated with uncontrolled glucose and lipid metabolism, leading to the onset of diabetes. To determine the relationship between POPs and T2D, two model systems were developed: glucose-immersed zebrafish to induce hyperglycemia, and zebrafish exposed to low-dose POPs in a water circulating system for three months. To examine the role of mitochondrial function, the activity of mitochondrial complexes I, II, III, and IV from the eyes of the two zebrafish models was measured spectrophotometrically. Enhanced enzymatic activities of mitochondrial complexes III and IV were observed in the eyes of both hyperglycemia and low-dose POPs exposed models, especially in male zebrafish. These results demonstrate that POPs alleviate mitochondrial oxidative phosphorylation (OXPHOS) in a sex-dependent manner through a compensatory mechanism, which is also observed in acute hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Hidrocarbonetos Clorados/toxicidade , Hiperglicemia/metabolismo , Mitocôndrias/efeitos dos fármacos , Poluentes Orgânicos Persistentes/toxicidade , Retina/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Glicemia/análise , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA