Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 44: 69-86, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33534614

RESUMO

Comparative neuroscience is entering the era of big data. New high-throughput methods and data-sharing initiatives have resulted in the availability of large, digital data sets containing many types of data from ever more species. Here, we present a framework for exploiting the new possibilities offered. The multimodality of the data allows vertical translations, which are comparisons of different aspects of brain organization within a single species and across scales. Horizontal translations compare particular aspects of brain organization across species, often by building abstract feature spaces. Combining vertical and horizontal translations allows for more sophisticated comparisons, including relating principles of brain organization across species by contrasting horizontal translations, and for making formal predictions of unobtainable data based on observed results in a model species.


Assuntos
Neurociências , Encéfalo
2.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

3.
Development ; 149(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297994

RESUMO

Mammary organoid (MaO) models are only available for a few traditional model organisms, limiting our ability to investigate mammary gland development and cancer across mammals. This study established equine mammary organoids (EqMaOs) from cryopreserved mammary tissue, in which mammary tissue fragments were isolated and embedded into a 3D matrix to produce EqMaOs. We evaluated viability, proliferation and budding capacity of EqMaOs at different time points during culture, showing that although the number of proliferative cells decreased over time, viability was maintained and budding increased. We further characterized EqMaOs based on expression of stem cell, myoepithelial and luminal markers, and found that EqMaOs expressed these markers throughout culture and that a bilayered structure as seen in vivo was recapitulated. We used the milk-stimulating hormone prolactin to induce milk production, which was verified by the upregulation of milk proteins, most notably ß-casein. Additionally, we showed that our method is also applicable to additional non-traditional mammalian species, particularly domesticated animals such as cats, pigs and rabbits. Collectively, MaO models across species will be a useful tool for comparative developmental and cancer studies.


Assuntos
Glândulas Mamárias Animais , Organoides , Animais , Divisão Celular , Células Epiteliais/metabolismo , Feminino , Cavalos , Lactação , Mamíferos , Coelhos , Células-Tronco , Suínos
4.
Environ Res ; 252(Pt 3): 119045, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704014

RESUMO

Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.


Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos , Poluentes Químicos da Água , Zooplâncton , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Zooplâncton/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
5.
Bioessays ; 44(1): e2100167, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802161

RESUMO

Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.


Assuntos
Evolução Biológica , Seleção Genética , Adaptação Fisiológica , Animais , Humanos , Fenótipo
6.
J Bacteriol ; 205(7): e0015323, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37347176

RESUMO

Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.


Assuntos
Streptomyces coelicolor , Streptomyces , Antibacterianos/metabolismo , Streptomyces coelicolor/genética , Streptomyces/metabolismo , Proteínas de Bactérias/genética
7.
Plant J ; 112(5): 1298-1315, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239071

RESUMO

Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.


Assuntos
Brassica rapa , Brassicaceae , Humanos , Brassicaceae/metabolismo , Fotossíntese/genética , Produtos Agrícolas , Fenótipo
8.
RNA ; 27(1): 80-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055239

RESUMO

High-throughput RNA sequencing unveiled the complexity of transcriptome and significantly increased the records of long noncoding RNAs (lncRNAs), which were reported to participate in a variety of biological processes. Identification of lncRNAs is a key step in lncRNA analysis, and a bunch of bioinformatics tools have been developed for this purpose in recent years. While these tools allow us to identify lncRNA more efficiently and accurately, they may produce inconsistent results, making selection a confusing issue. We compared the performance of 41 analysis models based on 14 software packages and different data sets, including high-quality data and low-quality data from 33 species. In addition, computational efficiency, robustness, and joint prediction of the models were explored. As a practical guidance, key points for lncRNA identification under different situations were summarized. In this investigation, no one of these models could be superior to others under all test conditions. The performance of a model relied to a great extent on the source of transcripts and the quality of assemblies. As general references, FEELnc_all_cl, CPC, and CPAT_mouse work well in most species while COME, CNCI, and lncScore are good choices for model organisms. Since these tools are sensitive to different factors such as the species involved and the quality of assembly, researchers must carefully select the appropriate tool based on the actual data. Alternatively, our test suggests that joint prediction could behave better than any single model if proper models were chosen. All scripts/data used in this research can be accessed at http://bioinfo.ihb.ac.cn/elit.


Assuntos
Biologia Computacional/métodos , Genoma , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Software , Animais , Benchmarking , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Genéticos , Anotação de Sequência Molecular , Plantas/genética , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transcriptoma
9.
J Exp Bot ; 74(21): 6522-6540, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37668374

RESUMO

Gene co-expression networks (GCNs) have not been extensively studied in non-model plants. However, the rapid accumulation of transcriptome datasets in certain species represents an opportunity to explore underutilized network aggregation approaches. In fact, aggregated GCNs (aggGCNs) highlight robust co-expression interactions and improve functional connectivity. We applied and evaluated two different aggregation methods on public grapevine RNA-Seq datasets from three different tissues (leaf, berry, and 'all organs'). Our results show that co-occurrence-based aggregation generally yielded the best-performing networks. We applied aggGCNs to study several transcription factor gene families, showing their capacity for detecting both already-described and novel regulatory relationships between R2R3-MYBs, bHLH/MYC, and multiple specialized metabolic pathways. Specifically, transcription factor gene- and pathway-centered network analyses successfully ascertained the previously established role of VviMYBPA1 in controlling the accumulation of proanthocyanidins while providing insights into its novel role as a regulator of p-coumaroyl-CoA biosynthesis as well as the shikimate and aromatic amino acid pathways. This network was validated using DNA affinity purification sequencing data, demonstrating that co-expression networks of transcriptional activators can serve as a proxy of gene regulatory networks. This study presents an open repository to reproduce networks in other crops and a GCN application within the Vitviz platform, a user-friendly tool for exploring co-expression relationships.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica
10.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373099

RESUMO

Poplar was one of the first woody species whose individual chromosomes could be identified using chromosome specific painting probes. Nevertheless, high-resolution karyotype construction remains a challenge. Here, we developed a karyotype based on the meiotic pachytene chromosome of Populus simonii which is a Chinese native species with many excellent traits. This karyotype was anchored by oligonucleotide (oligo)-based chromosome specific painting probes, a centromere-specific repeat (Ps34), ribosomal DNA, and telomeric DNA. We updated the known karyotype formula for P. simonii to 2n = 2x = 38 = 26m + 8st + 4t and the karyotype was 2C. The fluorescence in situ hybridization (FISH) results revealed some errors in the current P. simonii genome assembly. The 45S rDNA loci were located at the end of the short arm of chromosomes 8 and 14 by FISH. However, they were assembled on pseudochromosomes 8 and 15. In addition, the Ps34 loci were distributed in every centromere of the P. simonii chromosome in the FISH results, but they were only found to be present in pseudochromosomes 1, 3, 6, 10, 16, 17, 18, and 19. Our results reveal that pachytene chromosomes oligo-FISH is a powerful tool for constructing high-resolution karyotypes and improving the quality of genome assembly.


Assuntos
Populus , Hibridização in Situ Fluorescente/métodos , Populus/genética , Cromossomos de Plantas/genética , Cariotipagem , Cariótipo
11.
New Phytol ; 236(1): 43-48, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35801919

RESUMO

Comparative analyses of growth-regulatory mechanisms between Arabidopsis and maize revealed that even when the gene space is conserved, the translation of knowledge from model species to crops is not trivial. Based on these insights, we formulate future opportunities to improve the interpretation of curiosity-driven research towards crop improvement.


Assuntos
Arabidopsis , Redes Reguladoras de Genes , Arabidopsis/genética , Produtos Agrícolas/genética , Zea mays/genética
12.
Environ Res ; 212(Pt E): 113484, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644492

RESUMO

Plastic pollution in aquatic environments is present in all compartments from surface water to benthic sediment, becoming a topic of emerging concern due to the internalization, retention time, and its effects on aquatic biota. Crustacea with nearly 70,000 species, broad distribution and different roles in the trophic webs is a significant target of the increasing plastic pollution. At least 98 publications in the last 10 years report the impact of plastics in crustaceans, all suggesting that this taxon is at high risk for ecosystem disadvantage by plastic contamination loads. This review compiles the current knowledge on physiological effects (endpoints) by plastic contamination analyzed in crustaceans in the last 10 years, highlighting their use as model species for ecotoxicological tests, sentinels species and bioindicators. Plastic contamination analyzed in this review includes macroplastic, microplastic, and nanoplastic, in a wide variety of types. The studies were focused on 38 marine species with an economic interest in fisheries and aquaculture; 14 freshwater with a higher frequency in standard test species and 4 estuarial and 3 mangrove species with ecological interest. The publications reviewed were divided into studies describing plastic presence in crustaceans without reporting toxic effects and those with analysis of plastic toxicity. Publications describing the plastic presence in the organisms show that the ingestion in individual effects and food-web transfer in ecological effects were the most frequent endpoints. The publications that analyzed plastic toxicity through survival, nutrition-metabolism-assimilation, and reproduction in individual effects, and bioaccumulation in ecological effects were the most frequent endpoints. This review gathers the available information on the use of crustaceans as model species in environmental impact for toxicity screening and hazard assessment. Besides, identifying knowledge gaps will let us propose some future directions in research and the effects on target fisheries species which involves a possible effect on human health.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Crustáceos , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos/toxicidade , Poluentes Químicos da Água/análise
13.
J Hered ; 113(4): 479-489, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35511871

RESUMO

Cervids are distinguished by the shedding and regrowth of antlers. Furthermore, they provide insights into prion and other diseases. Genomic resources can facilitate studies of the genetic underpinnings of deer phenotypes, behavior, and disease resistance. Widely distributed in North America, the white-tailed deer (Odocoileus virginianus) has recreational, commercial, and food source value for many households. We present a genome generated using DNA from a single Illinois white-tailed sequenced on the PacBio Sequel II platform and assembled using Wtdbg2. Omni-C chromatin conformation capture sequencing was used to scaffold the genome contigs. The final assembly was 2.42 Gb, consisting of 508 scaffolds with a contig N50 of 21.7 Mb, a scaffold N50 of 52.4 Mb, and a BUSCO complete score of 93.1%. Thirty-six chromosome pseudomolecules comprised 93% of the entire sequenced genome length. A total of 20 651 predicted genes using the BRAKER pipeline were validated using InterProScan. Chromosome length assembly sequences were aligned to the genomes of related species to reveal corresponding chromosomes.


Assuntos
Cervos , Animais , Cromossomos/genética , Cervos/genética , Genoma , Anotação de Sequência Molecular
14.
Adv Exp Med Biol ; 1354: 335-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34807450

RESUMO

Much of biomedical oriented research is conducted with animal models. Over the years, rodents (primarily rats and mice) have emerged as the preferred species for basic biochemistry, cell biology, physiology and nutrition studies. In the past, dogs have been used for the evaluation of dietary protein quality and other aspects of animal nitrogen metabolism and physiology, cardiovascular and endocrine research. At an increasing rate, pigs have also been used as a model species in biomedical research. Pigs are readily available in various mature sizes and genotypic/phenotypic traits, and there are many anatomic, nutritional and physiologic similarities between human beings and pigs. Many notable reviews summarizing the role of pigs in biomedical studies have already been published and these are cited below. The present review focuses on characteristics that make pigs an excellent biomedical animal model in particular in obesity, diabetes and cardiovascular research. To procure an animal model for obesity, irrespective of species used, these animals must be fed a dense caloric diet (high fat) to achieve an experimental working model within a reasonable period. This review also focuses on a putative role of gastrointestinal microbiota in obesity as obese animals exhibit a shift in the distribution of gastrointestinal microbial phyla from lean animals. But to date such results have not pinpointed a treatable cause for obesity. Sometimes, the choice of sampling sites for microbial assessment in many reports can be questioned as the microbial content and phyla distribution in easily collected fecal samples may differ from those obtained directly from the small intestine and upper colon. While pigs are still utilized in many countries for medical surgery practice, this has been discontinued in US medical schools.


Assuntos
Pesquisa Biomédica , Microbioma Gastrointestinal , Sus scrofa , Animais , Dieta , Fezes , Camundongos , Ratos , Suínos
15.
Fungal Genet Biol ; 152: 103565, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991665

RESUMO

Fungal dimorphism is a phenomenon by which a fungus can grow both as a yeast form and a hyphal form. It is frequently related to pathogenicity as different growth forms are more suitable for different functions during a life cycle. Among dimorphic plant pathogens, the corn smut fungus Ustilago maydis serves as a model organism to understand fungal dimorphism and its effect on pathogenicity. However, there is a lack of data on whether mechanisms elucidated from model species are broadly applicable to other fungi. In this study, two non-model plant-associated species in the smut fungus subphylum (Ustilaginomycotina), Tilletiopsis washingtonensis and Meira miltonrushii, were selected to compare dimorphic mechanisms in these to those in U. maydis. We sequenced transcriptomic profiles during both yeast and hyphal growth in these two species using Tween40, a lipid mimic, as a trigger for hyphal growth. We then compared our data with previously published data from U. maydis and a fourth but unrelated dimorphic phytopathogen, Ophiostoma novo-ulmi. Comparative transcriptomics was performed to identify common genes upregulated during hyphal growth in all four dimorphic species. Intriguingly, T. washingtonensis shares the least similarities of transcriptomic alteration (hyphal growth versus yeast growth) with the others, although it is closely related to M. miltonrushii and U. maydis. This suggests that phylogenetic relatedness is not correlated with transcriptomic similarity under the same biological phenomenon. Among commonly expressed genes in the four species, genes in cell energy production and conversion, amino acid transport and metabolism and cytoskeleton are significantly enriched. Considering dimorphism genes characterized in U. maydis, as well as hyphal tip-associated genes from the literature, we found only genes encoding the cell end marker Tea4/TeaC and the kinesin motor protein Kin3 concordantly expressed in all four species. This suggests a divergence in species-specific mechanisms for dimorphic transition and hyphal growth.


Assuntos
Fungos/genética , Fungos/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Plantas/microbiologia , Transcriptoma , Basidiomycota/genética , Fungos/classificação , Fungos/crescimento & desenvolvimento , Ophiostoma , Filogenia , Ustilaginales , Ustilago/genética , Ustilago/crescimento & desenvolvimento , Ustilago/metabolismo , Leveduras , Zea mays/microbiologia
16.
Cryobiology ; 101: 20-27, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34224691

RESUMO

Cryopreservation of sperm is an important tool for the conservation of threatened species. Many species of reptile are under considerable threat of extinction and there has been limited investigation of sperm cryopreservation in this taxonomic group. We performed a comparative test of toxicity to sperm of six commonly used cryoprotective agents (CPAs) at three concentrations (5%, 10%, 20%) from the Louisiana pinesnake, Pituophis ruthveni (n = 11), and the closely related bullsnake, Pituophis cantenifer (n = 8). Our objective was to determine the general toxicity of CPAs for cryopreservation in snakes and the cryoprotective ability of CPAs for sperm from the endangered Louisiana pinesnake. We conducted three experiments to: 1) evaluate the short-term in vitro toxicity of common CPAs in two closely related snake species, 2) determine the effectiveness of cryoprotectants for freezing and thawing semen in the Louisiana pinesnake, and 3) test the possible reduction in toxic effects of individual CPAs on semen of the Louisiana pinesnake by combining two of them. We used measures of motility including total motility, forward motility, and forward progressive motility index to characterize toxic effects and cryoprotective ability of each CPA. The results of our three experiments provide several important findings: 1) sperm of the bullsnake and Louisiana pinesnake responded differently to CPAs, 2) few CPAs provided any cryoprotection, as measured by percent recovered motility, in Louisiana pinesnakes, and 3) using mixtures of CPAs did not reduce toxicity relative to the best performing CPA on its own. Motility was best maintained at a concentration of 5% for CPAs tested; however, cryoprotection was best achieved with glycerol at 20% followed by DMA and DMF at 10%. These results provide further insight into the challenges faced by researchers attempting to cryopreserve sperm from snakes. Further comparative studies are required to determine the generality of cryopreservation methods in reptiles and suggest caution should be taken when developing cryopreservation protocols across species, particularly in snakes. All CPAs tested in this study were permeating CPAs and showed a significant acute toxic effect on motility at concentrations that provided cryoprotection. Future work in snakes might consider additional avenues of cryoprotection and combinations of multiple approaches.


Assuntos
Crioprotetores , Preservação do Sêmen , Animais , Criopreservação/métodos , Crioprotetores/toxicidade , Glicerol , Masculino , Sêmen , Preservação do Sêmen/veterinária , Serpentes , Motilidade dos Espermatozoides , Espermatozoides
17.
BMC Bioinformatics ; 21(1): 106, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183716

RESUMO

BACKGROUND: Function genomic studies will generally result in lists of genes that may provide clues for exploring biological questions and discovering unanticipated functions, based on differential gene expression analysis, differential epigenomic analysis or co-expression network analysis. While tools have been developed to identify biological functions that are enriched in the genes sets, there remains a need for comprehensive tools that identify functional enrichment of genes for both model and non-model species from a different function classification perspective. RESULTS: We developed AllEnricher, a tool that calculates gene set function enrichment, with user-defined updatable libraries backing up for both model and non-model species as well as providing comprehensive functional interpretation from multiple dimensions, including GO, KEGG, Reactome, DO and DisGeNET. CONCLUSIONS: AllEnricher incorporates up to date information from different public resources and provides a comprehensive resolution for biologists to make sense out of specific gene sets, making it an advanced open-source tool for gene set function analysis.


Assuntos
Perfilação da Expressão Gênica/métodos , Interface Usuário-Computador , Bases de Dados Genéticas , Doença/genética , Ontologia Genética , Humanos
18.
BMC Genomics ; 21(1): 815, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225885

RESUMO

BACKGROUND: Annelids are one the most speciose and ecologically diverse groups of metazoans. Although a significant effort has been recently invested in sequencing genomes of a wide array of metazoans, many orders and families within the phylum Annelida are still represented by a single specimen of a single species. The genus of interstitial annelids Ophryotrocha (Dorvilleidae, Errantia, Annelida) is among these neglected groups, despite its extensive use as model organism in numerous studies on the evolution of life history, physiological and ecological traits. To compensate for the paucity of genomic information in this genus, we here obtained novel complete mitochondrial genomes of six Ophryotrocha species using next generation sequencing. In addition, we investigated the evolution of the reproductive mode in the Ophryotrocha genus using a phylogeny based on two mitochondrial markers (COXI and 16S rDNA) and one nuclear fragment (Histone H3). RESULTS: Surprisingly, gene order was not conserved among the six Ophryotrocha species investigated, and varied greatly as compared to those found in other annelid species within the class Errantia. The mitogenome phylogeny for the six Ophryotrocha species displayed a separation of gonochoric and hermaphroditic species. However, this separation was not observed in the phylogeny based on the COX1, 16S rDNA, and H3 genes. Parsimony and Bayesian ancestral trait reconstruction indicated that gonochorism was the most parsimonious ancestral reproductive mode in Ophryotrocha spp. CONCLUSIONS: Our results highlight the remarkably high level of gene order variation among congeneric species, even in annelids. This encourages the need for additional mitogenome sequencing of annelid taxa in order to properly understand its mtDNA evolution, high biodiversity and phylogenetic relationships.


Assuntos
Anelídeos , Genoma Mitocondrial , Animais , Anelídeos/genética , Teorema de Bayes , Evolução Molecular , Rearranjo Gênico , Humanos , Filogenia
19.
Cytometry A ; 97(11): 1136-1144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32427422

RESUMO

Growth rate (GR), esterase activity (EA), membrane potential (MP), and DNA content were measured by flow cytometry to test if this powerful tool could be included in risk assessment and monitoring programs. This study tests a battery of endpoints that were measured on Scenedesmus (Acutodesmus) obliquus as model species, under high levels of injected CO2 to be proposed as biomarkers of effect. New technologies such as carbon capture and storage (CCS) bring positive consequences on CO2 mitigation strategies but also could have negative consequences if a CO2 leakage occurs during injection. Under this scenario, pH might drop down to 4 pH units around the pipe where the leakage happens. The study focus on to ascertain if the endpoints fulfill the requirements such as sensitiveness, be timely and cost-effective, be easy to measure and interpret, and be nondestructive, valuable attributes in effective biomarkers. CO2 injected at high levels significantly affects the EA, the membrane polarization, as well as GRs. However the DNA content did not shown a clear response under this condition. In conclusion, the GR, the EA, and the MP analyzed by flow cytometry fulfilled the attributes mentioned above and are proposed as biomarkers of effect in CCS monitoring programs. © 2020 International Society for Advancement of Cytometry.


Assuntos
Microalgas , Scenedesmus , Biomassa , Dióxido de Carbono , Citometria de Fluxo
20.
J Exp Bot ; 71(11): 3305-3313, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32100007

RESUMO

It is generally accepted that land plants evolved from streptophyte algae. However, there are also many chlorophytes (a sister group of streptophyte algae and land plants) that moved to terrestrial habitats and even resemble mosses. This raises the question of why no land plants evolved from chlorophytes. In order to better understand what enabled streptophyte algae to conquer the land, it is necessary to study the chlorophytes as well. This review will introduce the freshwater filamentous chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. It will also focus on current knowledge about the evolution of morphological complexity in chlorophytes versus streptophytes and their respective morphological/behavioural adaptations to semi-terrestrial habitats, and will show why Draparnaldia is needed as a new model system.


Assuntos
Clorofíceas , Clorófitas , Embriófitas , Adaptação Fisiológica , Água Doce , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA