RESUMO
A new biodegradable platform-based sensor for formaldehyde assay is proposed. Natural rubber latex was modified to polylactic acid-chloroacetated natural rubber polymer blend sheets. The polymer blend sheet was grafted using a water-based system with amine monomers as a platform, with a spot exhibiting positive polarity for immobilizing with anionic dye (Acid Red 27). The sensor was exposed to formaldehyde. The color intensity of the dye on the sensor spot would decrease. Using a smartphone with image processing (via ImageJ program), the color intensity change (∆B) could be followed. A linear calibration, ∆B intensity = 0.365 [FA] + 6.988, R2 = 0.997, was obtained for 10-150 mM FA with LOD and LOQ at 3 and 10 mM, respectively (linear regression method). The precision was lower than 20% RSD. Application to real seafood samples was demonstrated. The ready-to-use sensor with the proposed method was cost-effective, was portable for on-site analysis, and demonstrated green chemical analysis.
Assuntos
Borracha , Smartphone , Formaldeído/análise , Alimentos Marinhos/análise , ÁguaRESUMO
The brittle behavior of poly(lactic acid) (PLA) and PLA composites with inorganic filler limits their applications; the addition of a toughening agent, such as a rubbery phase, was selected to transform the brittle to ductile behavior for versatility in various applications. This work aims to study the properties of PLA and PLA composite with filled nanosized hydroxyapatite (nHA) after adding modified natural rubber (MoNR), which acts as a toughening agent. MoNR refers to poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber. nHA was prepared from fish scales. Its characteristics were investigated and was confirmed to be comparable to those of commercial grade. PLA-MoNR at various MoNR contents and PLA/nHA composites with/without MoNR were prepared by melt mixing. Their morphology, mechanical, and thermal properties were observed and investigated. Samples with MoNR added showed the dispersion of spherical particles, indicating incompatibility. However, the mechanical properties of PLA-MoNR, which had MoNR added at 10 phr, showed toughening behavior (increased impact strength by more than two times compared to that of neat PLA). The PLA/nHA composite with MoNR showed the same result. The addition of MoNR in the composite increased its impact strength by 1.27 times compared to the composite without MoNR. MoNR can be a stress concentrator, resulting in toughened PLA and PLA/nHA composite.
RESUMO
Due to global warming and environmental concerns, developing a fully bio-based nanocomposite is an attractive issue. In this work, the cellulose nanocrystals (CNCs) extracted from Luffa cylindrica, a renewable resource, were explored as a bio-based reinforcing filler in natural rubber (NR) nanocomposites. In addition, modified natural rubber was explored as a potential compatibilizer to assist the filler dispersion in the rubber nanocomposite. The effect of the CNC content (0-15 phr) on cure characteristics and the mechanical, dynamic, and thermal properties of NR/CNC nanocomposites was investigated. The results showed that the scorch time and cure time of the nanocomposites increased with increased CNC contents. The optimum tensile strength of NR nanocomposites having 5 phr of the CNC (NR-CNC5) was 20.60% higher than the corresponding unfilled NR vulcanizate, which was related to the increased crosslink density of the rubber nanocomposite. The incorporation of oxidized-degraded NR (ODNR) as a compatibilizer in the NR-CNC5 nanocomposite exhibited a considerably reduced cure time, which will lead to energy conservation during production. Moreover, the cure rate index of NR-CNC5-ODNR is much higher than using a petroleum-based silane coupling agent (Si69) as a compatibilizer in the NR-CNC5 nanocomposite. The good filler dispersion in the NR-CNC5 nanocomposite compatibilized by ODNR is comparable to the use of Si69, evidenced by scanning electron microscopy. There is, therefore, a good potential for the use of modified NR as a bio-based compatibilizer for rubber nanocomposites.
RESUMO
Natural rubber (NR) and its derivatives play indispensable roles in various industries due to their unique properties and versatile applications. However, the widespread utilization of NR faces intrinsic challenges such as limited mechanical strength, poor resistance to heat and organic solvent, poor electrical conductivity, and low compatibility with other materials, prompting researchers to explore enhancing its performance. Modified NRs (MNRs) like cyclization, deproteinization, chlorination, epoxidation, or grafting NR demonstrated a few enhanced merits compared to NR. However, various strategies, such as blending, vulcanization, crosslinking, grafting, plasticization, reinforcement, and nanostructuring, overcame most drawbacks. This review comprehensively examines these challenges and delves into the modification strategies employed to enhance the properties and expand the applications of NR and its derivatives. Furthermore, the review explores future visions for the NR industry, emphasizing integrating advanced modification techniques, adopting sustainable practices, and promoting circular economy principles. By elucidating the inherent challenges, outlining effective modification strategies, and envisioning future trajectories, this review provides valuable insights for stakeholders seeking to navigate and contribute to the sustainable development of the NR sector.
Assuntos
Borracha , Borracha/químicaRESUMO
Poly(lactic acid) (PLA), derived from renewable resources, plays a significant role in the global biodegradable plastic market. However, its widespread adoption faces challenges, including high brittleness, hydrophobicity, limited biodegradability, and higher costs compared to traditional petroleum-based plastics. This study addresses these challenges by incorporating thermoplastic pineapple stem starch (TPSS) and modified natural rubber (MNR) into PLA blends. TPSS, derived from pineapple stem waste, is employed to enhance hydrophilicity, biodegradability, and reduce costs. While the addition of TPSS (10 to 40 wt.%) marginally lowered mechanical properties due to poor interfacial interaction with PLA, the inclusion of MNR (1 to 10 wt.%) in the PLA/20TPSS blend significantly improved stretchability and impact strength, resulting in suitable modulus (1.3 to 1.7 GPa) and mechanical strength (32 to 52 MPa) for diverse applications. The presence of 7 wt.% MNR increased impact strength by 90% compared to neat PLA. The ternary blend exhibited a heterogeneous morphology with enhanced interfacial adhesion, confirmed by microfibrils and a rough texture on the fracture surface. Additionally, a downward shift in PLA's glass transition temperature (Tg) by 5-6 °C indicated improved compatibility between components. Remarkably, the PLA ternary blends demonstrated superior water resistance and proper biodegradability compared to binary blends. These findings highlight the potential of bio-based plastics, such as PLA blends with TPSS and MNR, to contribute to sustainable economic models and reduce environmental impact for using in plastic packaging applications.
RESUMO
The crosslinked poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber/silica ((PAA-co-PAM)-DPNR/silica) composites were prepared and applied as coating materials for fertilizer in this work. The crosslinked (PAA-co-PAM)-DPNR was prepared via emulsion graft copolymerization in the presence of MBA as a crosslinking agent. The modified DPNR was mixed with various contents of silica (10 to 30 phr) to form the composites. The existence of crosslinked (PAA-co-PAM) after modification provided a water adsorption ability to DPNR. The swelling degree values of composites were found in the range of 2217.3 ± 182.0 to 8132.3 ± 483.8%. The addition of silica in the composites resulted in an improvement in mechanical properties. The crosslinked (PAA-co-PAM)-DPNR with 20 phr of silica increased its compressive strength and compressive modulus by 1.61 and 1.55 times compared to the unloaded silica sample, respectively. There was no breakage of samples after 80% compression strain. Potassium nitrate, a model fertilizer, was loaded into chitosan beads with a loading percentage of 40.55 ± 1.03% and then coated with the modified natural rubber/silica composites. The crosslinked (PAA-co-PAM)-DPNR/silica composites as the outer layers had the ability of holding water in their structure and retarded the release of fertilizer. These composites could be promising materials for controlled release and water retention that would have potential for agricultural application.
RESUMO
Acrylated natural rubber (ANR) with various acrylate contents (0.0-3.5 mol%) was prepared from natural rubber as a raw material and then incorporated with commercial 3D resin to fabricate specimens using digital light processing. As a result, the utilization of ANR with 1.5 mol% acrylate content could provide the maximum improvement in stretchability and impact strength, approximately 155% and 221%, respectively, over using pure 3D resin, without significant deterioration of tensile modulus and mechanical strength. According to evidence from a scanning electron microscope, this might be due to the partial interaction between the dispersed small rubber particles and the resin matrix. Additionally, the glass-transition temperature of the 3D-printed sample shifted to a lower temperature by introducing a higher acrylate content in the ANR. Therefore, this work might offer a practical way to effectively enhance the properties of the fundamental commercial 3D resin and broaden its applications. It also makes it possible to use natural rubber as a bio-based material in light-based 3D printing.
RESUMO
This work aims to enhance the dye-removal performance of prepared poly(acrylic acid-co-acrylamide)-modified, deproteinized, natural rubber ((PAA-co-PAM)-DPNR) through incorporation with silver nanoparticles/titanium dioxide. The (PAA-co-PAM)-DPNR was prepared by emulsion-graft copolymerization with a grafting efficiency of 10.20 ± 2.33 to 54.26 ± 1.55%. The composites based on (PAA-co-PAM)-DPNR comprising silver nanoparticles and titanium dioxide ((PAA-co-PAM)-DPNR/Ag-TiO2) were then prepared by latex compounding using the fixed concentration of AgNO3 (0.5 phr) and varying concentrations of TiO2 at 1.0, 2.5, and 5.0 phr. The formation of silver nanoparticles was obtained by heat and applied pressure. The composites had a porous morphology as they allowed water to diffuse in their structure, allowing the high specific area to interact with dye molecules. The incorporation of silver nanoparticles/titanium dioxide improved the compressive modulus from 1.015 ± 0.062 to 2.283 ± 0.043 KPa. The (PAA-co-PAM)-DPNR/Ag-TiO2 composite with 5.0 phr of TiO2 had a maximum adsorption capacity of 206.42 mg/g, which increased by 2.02-fold compared to (PAA-co-PAM)-DPNR. The behavior of dye removal was assessed with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model. These composites can maintain their removal efficiency above 90% for up to five cycles. Thus, these composites could have the potential for dye-removal applications.
RESUMO
This work aims to enhance the polarity of natural rubber by grafting copolymers onto deproteinized natural rubber (DPNR) to improve its compatibility with silica. Poly(acrylic acid-co-acrylamide)-grafted DPNR ((PAA-co-PAM)-DPNR) was successfully prepared by graft copolymerization with acrylic acid and acrylamide in the latex stage, as confirmed by FTIR. The optimum conditions to obtain the highest conversion, grafting efficiency, and grafting percentage were a reaction time of 360 min, a reaction temperature of 50 °C, and an initiator concentration of 1.0 phr. The monomer conversion, grafting efficiency, and grafting percentage were 91.9-94.1, 20.8-38.9, and 2.1-9.9%, respectively, depending on the monomer content. It was shown that the polarity of the natural rubber increased after grafting. The (PAA-co-PAM)-DPNR was then mixed with silica to prepare DPNR/silica composites. The presence of the (PAA-co-PAM)-DPNR and silica in the composites was found to improve the mechanical properties of the DPNR. The incorporation of 10 phr of silica into the (PAA-co-PAM)-DPNR with 10 phr monomer increased its tensile strength by 1.55 times when compared to 10 phr of silica loaded into the DPNR. The silica-filled (PAA-co-PAM)-DPNR provided s higher storage modulus, higher Tg, and a lower tan δ peak, indicating stronger modified DPNR/silica interactions and greater thermal stability when compared to silica-filled DPNR.
RESUMO
The novel biodegradable films of chloroacetated natural rubber/polyvinyl alcohol (CNR/PVA) (55/45â¯wt%) non-woven nanofiber films encapsulated with kaolin and starch (2.5 and 5â¯wt%) were produced successfully by green electrospinning technique. The effect of fillers with different content on the physical, chemical, mechanical, biocompatibility and biodegradation properties of CNR/PVA nanofiber films were investigated. The higher crystallinity obtained in CNR/PVA encapsulate with 2.5â¯wt% kaolin and nanofibers were formed with the maximum diameter distribution and mean value of 40-160â¯nm and 94.15⯱â¯54.19â¯nm respectively. DSC and DMA revealed the kaolin can improve the interfacial adhesion between CNR and PVA and contribute to enhancing the chemical interactions. The mechanical properties improved upon encapsulation of starch and kaolin and more favourable nanofibers with smaller diameter obtained using kaolin rather than starch. The cytotoxicity results revealed the viability of the prepared nanofiber films with human dermal fibroblast cell. Furthermore, the incorporation of starch and kaolin accelerated the degradation rate and the highest enzymatic degradation obtained with 2.5â¯wt% of starch. The prepared nanofiber films have the potential to be applied for the skin tissue engineering scaffold applications.
Assuntos
Derme/metabolismo , Fibroblastos/metabolismo , Teste de Materiais , Membranas Artificiais , Nanofibras/química , Álcool de Polivinil/química , Borracha/química , Alicerces Teciduais/química , Linhagem Celular , Derme/citologia , Fibroblastos/citologia , Humanos , Caulim/químicaRESUMO
Bio-adsorbent modified natural rubber (modified NR) was prepared, by placing the sulfonic acid functional group on the isoprene chain. This modification was carried out with the aim to prepare material capable to remove heavy metals from aqueous solution. The structures of modified NR materials were characterized by FT-IR and NMR spectroscopies. Thermal gravimetric analysis of modified NR showed that the initial degradation temperature of rubber decreases with increasing amount of polyacrylamido-2-methyl-1-propane sulfonic acid (PAMPS) in the structure. In addition, water uptake of the rubber based materials was studied as a function of time and content of PAMPS. The influence of the amount of PAMPS grafted onto NR, time, pH, concentration of metal ions, temperature, and regeneration were studied in terms of their influence on the adsorption of heavy metals (Pb(2+), Cd(2+) and Cu(2+)). The adsorption isotherms of Pb(2+) and Cd(2+) were fitted to the Freundlich isotherm model, while Cu(2+) was fitted to the Langmuir isotherm. However, the results from these two isotherms resulted in a similar behavior. The adsorption capacity of the modified NR for the various heavy metals was in the following order: Pb(2+)â¼Cd(2+)>Cu(2+). The maximum adsorption capacities of Pb(2+), Cd(2+), and Cu(2+) were 272.7, 267.2, and 89.7 mg/g of modified rubber, respectively. Moreover, the modified natural rubber was used for the removal of metal ions in real samples of industrial effluents where the efficiency and regeneration were also investigated.