Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 32(3): 504-519, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34339488

RESUMO

Patients with neurodevelopmental disorders show impaired motor skill learning. It is unclear how the effect of genetic variation on synaptic function and transcriptome profile may underlie experience-dependent cortical plasticity, which supports the development of fine motor skills. RELN (reelin) is one of the genes implicated in neurodevelopmental psychiatric vulnerability. Heterozygous reeler mutant (HRM) mice displayed impairments in reach-to-grasp learning, accompanied by less extensive cortical map reorganization compared with wild-type mice, examined after 10 days of training by intracortical microstimulation. Assessed by patch-clamp recordings after 3 days of training, the training induced synaptic potentiation and increased glutamatergic-transmission of cortical layer III pyramidal neurons in wild-type mice. In contrast, the basal excitatory and inhibitory synaptic functions were depressed, affected both by presynaptic and postsynaptic impairments in HRM mice; and thus, no further training-induced synaptic plasticity occurred. HRM exhibited downregulations of cortical synaptophysin, immediate-early gene expressions, and gene enrichment, in response to 3 days of training compared with trained wild-type mice, shown using quantitative reverse transcription polymerase chain reaction, immunohistochemisty, and RNA-sequencing. We demonstrated that motor learning impairments associated with modified experience-dependent cortical plasticity are at least partially attributed by the basal synaptic alternation as well as the aberrant early experience-induced gene enrichment in HRM.


Assuntos
Plasticidade Neuronal , Células Piramidais , Animais , Heterozigoto , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Destreza Motora/fisiologia , Plasticidade Neuronal/genética
2.
J Stroke Cerebrovasc Dis ; 26(2): 260-272, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743923

RESUMO

BACKGROUND AND OBJECTIVE: Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). METHODS: Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-ß-d-arabinofuranoside (Ara-C). RESULTS: Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. CONCLUSIONS: After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out.


Assuntos
Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Navegação Espacial/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/reabilitação , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Masculino , Microglia/patologia , Microglia/fisiologia , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Distribuição Aleatória , Ratos Endogâmicos F344 , Acidente Vascular Cerebral/patologia , Resultado do Tratamento
3.
Neural Regen Res ; 12(2): 185-192, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28400791

RESUMO

Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.

4.
Neuroscience ; 339: 338-362, 2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27725217

RESUMO

Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area.


Assuntos
Isquemia Encefálica/reabilitação , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Medula Cervical/patologia , Medula Cervical/fisiopatologia , Modelos Animais de Doenças , Membro Anterior/fisiopatologia , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Masculino , Córtex Motor/patologia , Neurônios/patologia , Neurônios/fisiologia , Tratos Piramidais/patologia , Tratos Piramidais/fisiopatologia , Distribuição Aleatória , Ratos Endogâmicos F344 , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA