Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2310542, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516964

RESUMO

Memristors, non-volatile switching memory platform, has recently attracted significant interest, offering unique potential to enable the realization of human brain-like neuromorphic computing efficiency. Memristors also demonstrate excellent temperature tolerance, long-term durability, and high tunability with nanosecond pulses, making them highly attractive for neuromorphic computing applications. To better understand the material processing, microstructure, and property relationship of switching mechanisms in memristor devices, computational methodologies, and tools are developed to predict the I-V characteristics of memristor devices based on tantalum oxide (TaOx) resistive random-access memory (ReRAM) integrated with an n-channel metal-oxide-semiconductor (NMOS) transistor. A multiphysics model based on coupled partial differential equations for electrical and thermal transport phenomena is solved for the high- and low-resistance states during the formation, growth, and destruction of a conducting filament through SET and RESET stages. These stages effectively represent the migration of oxygen vacancies within an oxide exchange layer. A series of parametric studies and energy minimization calculations are conducted to determine probable ranges for key material and model parameters accounting for the experimental data. The computational model successfully predicted the measured I-V curves across various gate voltages applied to the NMOS transistor in the one transistor one resistance (1T1R) configuration.

2.
Small ; : e2404012, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022999

RESUMO

Despite recent revolutionary advancements in photovoltaic (PV) technology, further improving cell efficiencies toward their Shockley-Queisser (SQ) limits remains challenging due to inherent optical, electrical, and thermal losses. Currently, most research focuses on improving optical and electrical performance through maximizing spectral utilization and suppressing carrier recombination losses, while there is a serious lack of effective opto-electro-thermal coupled management, which, however, is crucial for further improving PV performance and the practical application of PV devices. In this article, the energy conversion and loss processes of a PV device (with a specific focus on perovskite solar cells) are detailed under both steady-state and transient processes through rigorous opto-electro-thermal coupling simulation. By innovatively coupling multi-physical behaviors of photon management, carrier/ion transport, and thermodynamics, it meticulously quantifies and analyzes energy losses across optical, electrical, and thermal domains, identifies heat components amenable to regulation, and proposes specific regulatory means, evaluates their impact on device efficiency and operating temperature, offering valuable insights to advance PV technology for practical applications.

3.
Small ; : e2406229, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263781

RESUMO

Highly vertically thermally conductive silicon rubber (SiR) composites are widely used as thermal interface materials (TIMs) for chip cooling. Herein, inspired by water transport and transpiration of Moso bamboo-forests extensively existing in south China, and guided by filler self-assembly simulation, bamboo-forest-like heat conduction networks, with bamboo-stems-like vertically aligned polydopamine-coated carbon fibers (VA-PCFs), and bamboo-leaves-like horizontally layered Al2O3(HL-Al2O3), are rationally designed and constructed. VA-PCF/HL-Al2O3/SiR composites demonstrated enhanced heat conduction properties, and their through-plane thermal conductivity and thermal diffusivity reached 6.47 W (mK)-1 and 3.98 mm2 s-1 at 12 vol% PCF and 4 vol% Al2O3 loadings, which are 32% and 38% higher than those of VA-PCF (12 vol%) /SiR composites, respectively. The heat conduction enhancement mechanisms of VA-PCF/HL-Al2O3 networks on their SiR composites are revealed by multiscale simulation: HL-Al2O3 bridges the separate VA-PCF heat flow channels, and transfers more heat to the matrix, thereby increasing the vertical heat flux in composites. Along with high volume resistivity, low compression modulus, and coefficient of thermal expansion, VA-PCF/HL-Al2O3/SiR composites demonstrate great application potential as TIMs, which is proven using multiphysics simulation. This work not only makes a meaningful attempt at simulation-driven biomimetic material structure design but also provides inspiration for the preparation of TIMs.

4.
Graefes Arch Clin Exp Ophthalmol ; 262(9): 2751-2764, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38430228

RESUMO

PURPOSE: This review explores mathematical models, blinking characterization, and non-invasive techniques to enhance understanding and refine clinical interventions for ocular conditions, particularly for contact lens wear. METHODS: The review evaluates mathematical models in tear film dynamics and their limitations, discusses contact lens wear models, and highlights computational mechanical models. It also explores computational techniques, customization of models based on individual blinking dynamics, and non-invasive diagnostic tools like high-speed cameras and advanced imaging technologies. RESULTS: Mathematical models provide insights into tear film dynamics but face challenges due to simplifications. Contact lens wear models reveal complex ocular physiology and design aspects, aiding in lens development. Computational mechanical models explore eye biomechanics, often integrating tear film dynamics into a Multiphysics framework. While different computational techniques have their advantages and disadvantages, non-invasive tools like OCT and thermal imaging play a crucial role in customizing these Multiphysics models, particularly for contact lens wearers. CONCLUSION: Recent advancements in mathematical modeling and non-invasive tools have revolutionized ocular health research, enabling personalized approaches. The review underscores the importance of interdisciplinary exploration in the Multiphysics approach involving tear film dynamics and biomechanics for contact lens wearers, promoting advancements in eye care and broader ocular health research.


Assuntos
Lentes de Contato , Lágrimas , Humanos , Lágrimas/fisiologia , Lágrimas/metabolismo , Ajuste de Prótese , Piscadela/fisiologia , Síndromes do Olho Seco/fisiopatologia , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/terapia , Simulação por Computador , Modelos Teóricos , Fenômenos Biomecânicos
5.
Sensors (Basel) ; 24(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793925

RESUMO

As the imbalance between power demand and load capacity in electrical systems becomes increasingly severe, investigating the temperature variations in transformers under different load stresses is crucial for ensuring their safe operation. The thermal analysis of converter transformers poses challenges due to the complexity of model construction. This paper develops a full-scale model of a converter transformer using a multi-core high-performance computer and explores its thermal state at 80%, 100%, and 120% loading ratios using the COUPLED iteration method. Additionally, to validate the simulation model, 24 FBGs are installed in the experimental transformer to record the temperature data. The results indicate a general upward trend in winding the temperature from bottom to top. However, an internal temperature rise followed by a decrease is observed within certain sections. Moreover, as the loading ratio increases, both the peak temperature and temperature differential of the transformer windings rise, reaching a peak temperature of 107.9 °C at a 120% loading ratio. The maximum discrepancy between the simulation and experimental results does not exceed 3.5%, providing effective guidance for the transformer design and operational maintenance.

6.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339608

RESUMO

This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 µm/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 ± 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 ± 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.

7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339527

RESUMO

In order to improve the measurement sensitivity of ferrous wear debris sensors with a permanent magnet, a new numerical approach to the appropriate position of the sensor is presented. Moreover, a flow guide wall is proposed as a way to concentrate flow around the ferrous particle sensors. The flow guide wall is intended to further improve measurement sensitivity by allowing the flow containing ferrous particles to flow around the sensor. Numerical analysis was performed using the multi-physics analysis method for the most representative gearbox of the sump-tank type. In condition diagnosis using ferrous wear debris sensors, the position of the sensor has a great influence. In other words, there are cases where no measurements occur, despite the presence of abnormal wear and damage due to the wrong sensor position. To determine the optimal sensor position, this study used flow analysis for the flow caused by the movement of the gear, electric and magnetic field analysis to implement the sensor, and a particle tracing technique to track particle trajectory. The new analysis method and results of this study will provide important information for selecting the optimal sensor location and for the effective application of ferrous wear debris sensors, and will contribute to the oil sensor-based condition diagnosis technology.

8.
Sensors (Basel) ; 24(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339575

RESUMO

In this work, we present a multiphysics modeling approach capable of simulating electrochemical impedance spectroscopy (EIS) responses of screen-printed electrodes (SPEs) modified with self-assembled monolayers of 11-Mercaptoundecanoic acid (MUA). Commercially available gold SPEs are electrochemically characterized through experimental cyclic voltammetry and EIS measurements with 10 mM [Fe(CN)6]3-/4- redox couple in phosphate buffered saline before and after the surface immobilization of MUA at different concentrations. We design the multiphysics model through COMSOL Multiphysics® based on the 3D geometry of the devices under test. The model includes four different physics considering the metal/solution interface electrochemical phenomena, the ion and electron potentials and currents, and the measurement set-up. The model is calibrated through a set of experimental measurements, allowing the tuning of the parameters used by the model. We use the calibrated model to simulate the EIS response of MUA-modified SPEs, comparing the results with experimental data. The simulations fit the experimental curves well, following the variation of MUA concentration on the surface from 1 µM to 100 µM. The EIS parameters, retrieved through a CPE-modified Randles' circuit, confirm the consistency with the experimental data. Notably, the simulated surface coverage estimates and the variation of charge transfer resistance due to MUA-immobilization are well matched with their experimental counterparts, reporting only a 2% difference and being consistent with the experimental electrochemical behavior of the SPEs.

9.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066101

RESUMO

Partial discharge (PD) is one of the major causes of insulation accidents in oil-immersed transformers, generating a large number of signals that represent the health status of the transformer. In particular, acoustic signals can be detected by sensors to locate the source of the partial discharge. However, the array, type, and quantity of sensors play a crucial role in the research on the localization of partial discharge sources within transformers. Hence, this paper proposes a novel sensor array for the specific localization of PD sources using COMSOL Multiphysics software 6.1 to establish a three-dimensional model of the oil-immersed transformer and the different defect types of two-dimensional models. "Electric-force-acoustic" multiphysics field simulations were conducted to model ultrasonic signals of different types of PD by setting up detection points to collect acoustic signals at different types and temperatures instead of physical sensors. Subsequently, simulated waveforms and acoustic spatial distribution maps were acquired in the software. These simulation results were then combined with the time difference of arrival (TDOA) algorithm to solve a system of equations, ultimately yielding the position of the discharge source. Calculated positions were compared with the actual positions using an error iterative algorithm method, with an average spatial error about 1.3 cm, which falls within an acceptable range for fault diagnosis in transformers, validating the accuracy of the proposed method. Therefore, the presented sensor array and computational localization method offer a reliable theoretical basis for fault diagnosis techniques in transformers.

10.
Electromagn Biol Med ; 43(1-2): 125-134, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38533761

RESUMO

The present study analyzed the microwave ablation of cancerous tumors located in six major cancer-prone organs and estimated the significance of input power and treatment time parameters in the apt positioning of the trocar into the tissue during microwave ablation. The present study has considered a three-dimensional two-compartment tumour-embedded tissue model. FEA based COMSOL Multiphysics software with inbuilt bioheat transfer, electromagnetic waves, heat transfer in solids and fluids, and laminar flow physics has been used to obtain the numerical results. Based on the mortality rates caused by cancer, the present study has considered six major organs affected by cancer, viz. lung, breast, stomach/gastric, liver, liver (with colon metastasis), and kidney for MWA analysis. The input power (100 W) and ablation times (4 minutes) with apt and inapt positioning of the trocar have been considered to compare the ablation volume of various cancerous tissues. The present study addresses one of the major problems clinicians face, i.e. the proper placement of the trocar due to poor imaging techniques and human error, resulting in incomplete tumor ablation and increased surgical procedures. The highest values of the ablation region have been observed for the liver, colon metastatic liver and breast cancerous tissues compared with other organs at the same operating conditions.


The present study has investigated the application of microwave ablation for cancer treatment in six major organs, specifically emphasizing the evaluation of ablation volume during the procedure. Using COMSOL-Multiphysics software, the study has investigated MWA of tumor embedded organs in the lung, breast, stomach, liver, and kidney. The positioning of the trocar, a crucial element in the treatment process, has been examined to address challenges in effectively ablating tumors.From the results, it has been revealed that liver, colon metastatic liver, and breast cancer tissues exhibited the largest areas of ablation volume compared with other organs.Organs like the breast and hepatic glands, characterized by lower heat capacity and density, have shown larger ablation zones. Trocar positioning significantly influenced the stomach, liver, and kidney, where improper placement led to notable increases in ablation volume, posing a risk of unintended damage to healthy tissue.Further, the study has concluded that precise trocar positioning plays a crucial role in optimizing microwave ablation. This precision has the potential to enhance the effectiveness of cancer treatments while minimizing harm to healthy tissue. The insights gained from this research offer valuable information for clinicians looking to enhance the precision of cancer therapies, ultimately aiming for improved outcomes for patients.


Assuntos
Técnicas de Ablação , Micro-Ondas , Neoplasias , Humanos , Técnicas de Ablação/instrumentação , Neoplasias/patologia , Neoplasias/cirurgia , Instrumentos Cirúrgicos , Análise de Elementos Finitos , Modelos Biológicos
11.
Curr Issues Mol Biol ; 45(4): 3048-3067, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37185724

RESUMO

Cell counting and sorting is a vital step in the purification process within the area of biomedical research. It has been widely reported and accepted that the use of hydrodynamic focusing in conjunction with the application of a dielectrophoretic (DEP) force allows efficient separation of biological entities such as platelets from red blood cell (RBC) samples due to their size difference. This paper presents computational results of a multiphysics simulation modelling study on evaluating continuous separation of RBCs and platelets in a microfluidic device design with saw-tooth profile electrodes via DEP. The theoretical cell particle trajectory, particle cell counting, and particle separation distance study results reported in this work were predicted using COMSOL v6.0 Multiphysics simulation software. To validate the numerical model used in this work for the reported device design, we first developed a simple y-channel microfluidic device with square "in fluid" electrodes similar to the design reported previously in other works. We then compared the obtained simulation results for the simple y-channel device with the square in fluid electrodes to the reported experimental work done on this simple design which resulted in 98% agreement. The design reported in this work is an improvement over existing designs in that it can perform rapid separation of RBCs (estimated 99% purification) and platelets in a total time of 6-7 s at a minimum voltage setting of 1 V and at a minimum frequency of 1 Hz. The threshold for efficient separation of cells ends at 1000 kHz for a 1 V setting. The saw-tooth electrode profile appears to be an improvement over existing designs in that the sharp corners reduced the required horizontal distance needed for separation to occur and contributed to a non-uniform DEP electric field. The results of this simulation study further suggest that this DEP separation technique may potentially be applied to improve the efficiency of separation processes of biological sample scenarios and simultaneously increase the accuracy of diagnostic processes via cell counting and sorting.

12.
Pharm Res ; 40(7): 1633-1639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37523013

RESUMO

Subcutaneously administered drugs are growing in popularity for both large and small molecule drugs. However, development of these systems - particularly generics - is slowed due to a lack of formal guidance regarding preclinical testing and in vitro - in vivo correlations (IVIVC). Many of these methods, while appropriate for oral drugs, may not be optimized for the complex injection site physiologies, and release rate and absorption mechanisms of subcutaneous drugs. Current limitations for formulation design and IVIVC can be supported by implementing mechanistic, computational methods. These methods can help to inform drug development by identifying key drug and formulation attributes, and their effects on drug release rates. This perspective, therefore, addresses current guidelines in place for oral IVIVC development, how they may differ for subcutaneously administered compounds, and how modeling and simulation can be implemented to inform design of these products. As such, integration of modeling and simulation with current IVIVC systems can help in driving the development of subcutaneous injectables.


Assuntos
Química Farmacêutica , Desenvolvimento de Medicamentos , Liberação Controlada de Fármacos , Injeções , Simulação por Computador , Solubilidade
13.
Sensors (Basel) ; 23(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005651

RESUMO

Fluid-structure interactions (FSI) are used in a variety of sensors based on micro- and nanotechnology to detect and measure changes in pressure, flow, and viscosity of fluids. These sensors typically consist of a flexible structure that deforms in response to the fluid flow and generates an electrical, optical, or mechanical signal that can be measured. FSI-based sensors have recently been utilized in applications such as biomedical devices, environmental monitoring, and aerospace engineering, where the accurate measurement of fluid properties is critical to ensure performance and safety. In this work, multiphysics models are employed to identify and study parameters that affect the performance of an FSI-based microfluidic viscometer that measures the viscosity of Newtonian and non-Newtonian fluids using the deflection of flexible micropillars. Specifically, we studied the impact of geometric parameters such as pillar diameter and height, aspect ratio of the pillars, pillar spacing, and the distance between the pillars and the channel walls. Our study provides design guidelines to adjust the sensitivity of the viscometer toward specific applications. Overall, this highly sensitive microfluidic sensor can be integrated into complex systems and provide real-time monitoring of fluid viscosity.

14.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177548

RESUMO

A grounded coplanar waveguide (GCPW), as a millimeter wave special transmission line, can be used to calibrate broadband oscilloscope probes. A method to change the through-hole structure to widen the GCPW is investigated in this paper. The effect of the through-hole array on the band-width of the GCPW is investigated and verified using COMSOL Multiphysics simulation software. Finally, the S-parameters of the fabricated GCPWs are measured by a vector network analyzer, and the results show that they have an insertion loss > -3 dB and return loss < -10 dB in the frequency range of DC to 60 GHz, which satisfies the design requirements.

15.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299756

RESUMO

This research article proposes and numerically investigates a photonic crystal fiber (PCF) based on a surface plasmon resonance (SPR) sensor for the detecting refractive index (RI) of unknown analytes. The plasmonic material (gold) layer is placed outside of the PCF by removing two air holes from the main structure, and a D-shaped PCF-SPR sensor is formed. The purpose of using a plasmonic material (gold) layer in a PCF structure is to introduce an SPR phenomenon. The structure of the PCF is likely enclosed by the analyte to be detected, and an external sensing system is used to measure changes in the SPR signal. Moreover, a perfectly matched layer (PML) is also placed outside of the PCF to absorb unwanted light signals towards the surface. The numerical investigation of all guiding properties of the PCF-SPR sensor is completed using a fully vectorial-based finite element method (FEM) to achieve the finest sensing performance. The design of the PCF-SPR sensor is completed using COMSOL Multiphysics software, version 1.4.50. According to the simulation results, the proposed PCF-SPR sensor has a maximum wavelength sensitivity of 9000 nm/RIU, an amplitude sensitivity of 3746 RIU-1, a sensor resolution of 1 × 10-5 RIU, and a figure of merit (FOM) of 900 RIU-1 in the x-polarized direction light signal. The miniaturized structure and high sensitivity of the proposed PCF-SPR sensor make it a promising candidate for detecting RI of analytes ranging from 1.28 to 1.42.


Assuntos
Ouro , Ressonância de Plasmônio de Superfície , Simulação por Computador , Fótons , Software
16.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36772316

RESUMO

To achieve a wide range and high accuracy detection of the vacuum level, for example, in an encapsulated vacuum microcavity, a composite-type MEMS Pirani gauge has been designed and fabricated. The Pirani gauge consists of two gauges of different sizes connected in series, with one gauge having a larger heat-sensitive area and a larger air gap for extending the lower measurable limit of pressure (i.e., the high vacuum end) and the other gauge having a smaller heat-sensitive area and a smaller air gap for extending the upper measurable limit. The high-resistivity titanium metal was chosen as the thermistor; SiNx was chosen as the dielectric layer, considering the factors relevant to simulation and manufacturing. By simulation using COMSOL Multiphysics and NI Multisim, a range of measurement of 2 × 10-2 to 2 × 105 Pa and a sensitivity of 52.4 mV/lgPa were obtained in an N2 environment. The performance of the fabricated Pirani gauge was evaluated by using an in-house made vacuum test system. In the test, the actual points of measurement range from 6.6 × 10-2 to 1.12 × 105 Pa, and the highest sensitivity is up to 457.6 mV/lgPa. The experimental results are better in the range of measurement, sensitivity, and accuracy than the simulation results. The Pirani gauge proposed in this study is simple in structure, easy to manufacture, and suitable for integration with other MEMS devices in a microcavity to monitor the vacuum level therein.

17.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203016

RESUMO

The growth of renewable energy sources presents a pressing challenge to the operation and maintenance of existing fossil fuel power plants, given that fossil fuel remains the predominant fuel source, responsible for over 60% of electricity generation in the United States. One of the main concerns within these fossil fuel power plants is the unpredictable failure of boiler tubes, resulting in emergency maintenance with significant economic and societal consequences. A reliable high-temperature sensor is necessary for in situ monitoring of boiler tubes and the safety of fossil fuel power plants. In this study, a comprehensive four-stage multi-physics computational framework is developed to assist the design, optimization installation, and operation of the high-temperature stainless-steel and quartz coaxial cable sensor (SSQ-CCS) for coal-fired boiler applications. With the consideration of various operation conditions, we predict the distributions of flue gas temperatures within coal-fired boilers, the temperature correlation between the boiler tube and SSQ-CCS, and the safety of SSQ-CCS. With the simulation-guided sensor installation plan, the newly designed SSQ-CCSs have been employed for field testing for more than 430 days. The computational framework developed in this work can guide the future operation of coal-fired plants and other power plants for the safety prediction of boiler operations.

18.
J Environ Manage ; 346: 118947, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699289

RESUMO

Combined remediation technologies are increasingly being considered to uranium contaminated groundwater, such as the joint utilize of permeable reactive bio-barrier (Bio-PRB) and electrokinetic remediation (EKR). While the assessment of uranium plume evolution in the combined remediation system (CRS) have often been impeded by insufficient understanding of multi-physical field superposition. Therefore, advanced knowledge in multi-physical field coupling in groundwater flow will be crucial to the practical application of these techniques. A two-dimensional multi-physical field coupling model was constructed for predicting the uranium degradation in CRS. The study demonstrates that the coupling model is able to predict the uranium plume evolution and rapidly evaluate the performance of CRS components. The results show that field electric direction and flow field strength are the key factors that affect the retardation and remediation performance of CRS. The reverse electric field direction significantly affected the contact reaction time of uranium in the system. The uranium residence time in the reverse electric field was 3.8 d, which was significantly greater than the original electric field (2.0 d). Depending on the voltage, the reverse electric field direction was 16%-36% more efficient than the original direction. The strength of the flow field was about two orders of magnitude higher than that of the electric field, so the groundwater flow rate dominated remediation efficiency. Reducing the flow rate by 1/2 could improve the performance of the system by approximately 66%. In addition, the coupling model can be utilized to design standard CRS for real site of uranium contaminated groundwater. To meet the optimal performance, the direction of the electric field should be set opposite to the flow field. This work has successfully used a coupling model to predict uranium contaminant-plume evolution in CRS and estimate the performance of each component.

19.
Angew Chem Int Ed Engl ; 62(32): e202305281, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279438

RESUMO

Single-crystal LiNix Coy Mnz O2 (SC-NCM, x+y+z=1) cathodes are renowned for their high structural stability and reduced accumulation of adverse side products during long-term cycling. While advances have been made using SC-NCM cathode materials, careful studies of cathode degradation mechanisms are scarce. Herein, we employed quasi single-crystalline LiNi0.65 Co0.15 Mn0.20 O2 (SC-NCM65) to test the relationship between cycling performance and material degradation for different charge cutoff potentials. The Li/SC-NCM65 cells showed >77 % capacity retention below 4.6 V vs. Li+ /Li after 400 cycles and revealed a significant decay to 56 % for 4.7 V cutoff. We demonstrate that the SC-NCM65 degradation is due to accumulation of rock-salt (NiO) species at the particle surface rather than intragranular cracking or side reactions with the electrolyte. The NiO-type layer formation is also responsible for the strongly increased impedance and transition-metal dissolution. Notably, the capacity loss is found to have a linear relationship with the thickness of the rock-salt surface layer. Density functional theory and COMSOL Multiphysics modeling analysis further indicate that the charge-transfer kinetics is decisive, as the lower lithium diffusivity of the NiO phase hinders charge transport from the surface to the bulk.

20.
Electrophoresis ; 43(5-6): 741-751, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35019166

RESUMO

We report on the investigation of electropreconcentration phenomena in micro-/nanofluidic devices integrating 100 µm long nanochannels using 2D COMSOL simulations based on the coupled Poisson-Nernst-Planck and Navier-Stokes system of equations. Our numerical model is used to demonstrate the influence of key governing parameters such as electrolyte concentration, surface charge density, and applied axial electric field on ion concentration polarization (ICP) dynamics in our system. Under sufficiently extreme surface-charge-governed transport conditions, ICP propagation is shown to enable various transient and stationary stacking and counter-flow gradient focusing mechanisms of anionic analytes. We resolve these spatiotemporal dynamics of analytes and electrolyte ICP over disparate time and length scales, and confirm previous findings that the greatest enhancement is observed when a system is tuned for analyte focusing at the charge, excluding microchannel, nanochannel electrical double layer (EDL) interface. Moreover, we demonstrate that such tuning can readily be achieved by including additional nanochannels oriented parallel to the electric field between two microchannels, effectively increasing the overall perm-selectivity and leading to enhanced focusing at the EDL interfaces. This approach shows promise in providing added control over the extent of ICP in electrokinetic systems, particularly under circumstances in which relatively weak ICP effects are observed using only a single channel.


Assuntos
Eletricidade , Eletrólitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA