Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 588, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862895

RESUMO

BACKGROUND: The skeletal muscle growth rate and body size of Tibetan pigs (TIB) are lower than Large white pigs (LW). However, the underlying genetic basis attributing to these differences remains uncertain. To address this knowledge gap, the present study employed whole-genome sequencing of TIB (slow growth) and LW (fast growth) individuals, and integrated with existing NCBI sequencing datasets of TIB and LW individuals, enabling the identification of a comprehensive set of genetic variations for each breed. The specific and predominant SNPs in the TIB and LW populations were detected by using a cutoff value of 0.50 for SNP allele frequency and absolute allele frequency differences (△AF) between the TIB and LW populations. RESULTS: A total of 21,767,938 SNPs were retrieved from 44 TIB and 29 LW genomes. The analysis detected 2,893,106 (13.29%) and 813,310 (3.74%) specific and predominant SNPs in the TIB and LW populations, and annotated to 24,560 genes. Further GO analysis revealed 291 genes involved in biological processes related to striated and/or skeletal muscle differentiation, proliferation, hypertrophy, regulation of striated muscle cell differentiation and proliferation, and myoblast differentiation and fusion. These 291 genes included crucial regulators of muscle cell determination, proliferation, differentiation, and hypertrophy, such as members of the Myogenic regulatory factors (MRF) (MYOD, MYF5, MYOG, MYF6) and Myocyte enhancer factor 2 (MEF2) (MEF2A, MEF2C, MEF2D) families, as well as muscle growth inhibitors (MSTN, ACVR1, and SMAD1); KEGG pathway analysis revealed 106 and 20 genes were found in muscle growth related positive and negative regulatory signaling pathways. Notably, genes critical for protein synthesis, such as MTOR, IGF1, IGF1R, IRS1, INSR, and RPS6KA6, were implicated in these pathways. CONCLUSION: This study employed an effective methodology to rigorously identify the potential genes associated with skeletal muscle development. A substantial number of SNPs and genes that potentially play roles in the divergence observed in skeletal muscle growth between the TIB and LW breeds were identified. These findings offer valuable insights into the genetic underpinnings of skeletal muscle development and present opportunities for enhancing meat production through pig breeding.


Assuntos
Frequência do Gene , Desenvolvimento Muscular , Músculo Esquelético , Polimorfismo de Nucleotídeo Único , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Suínos/genética , Suínos/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Sequenciamento Completo do Genoma , Tibet , Genoma
2.
BMC Genomics ; 25(1): 340, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575872

RESUMO

BACKGROUND: The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS: A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS: miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Patos/genética , Patos/metabolismo , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , Transcriptoma
3.
Anim Genet ; 55(1): 66-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37881102

RESUMO

Our previous studies showed that SYISL is a negative regulator of muscle growth and regeneration in mice, pigs and humans. SYISL knockout resulted in an increase in the density of muscle fibers and muscle growth. However, it is unclear whether there are natural mutations in pig SYNPO2 intron sense-overlapping lncRNA (pSYISL) that affect the expression of pSYISL and muscle growth traits. In this study, three SNPs in exons and six SNPs within the promoter of pSYISL were identified. Association analysis showed that the two SNPs in exons are significantly associated with loin muscle area (p < 0.05); the six SNPs in the promoter that show complete linkage are significantly associated with live backfat thickness and live loin muscle area in American Large White pigs. Bioinformatics and luciferase reporter assays as well as in vitro binding experiments indicated that the mutation of SNP rs702045770 (g.539G>A) leads to the loss of YY1 binding to the promoter, thus affecting the expression level of pSYISL, and we found that Jiangshan Black pigs with genotype GG have a higher expression level of pSYISL than genotype AA individuals, but the muscle fiber density was significantly lower than in genotype AA individuals. Furthermore, the association analysis showed that the carcass backfat thickness of genotype GG of SNP rs702045770 was significantly higher than that of other genotypes in (Pietrain × Duroc) × (Landrace × Yorkshire) crossbred pigs (p < 0.05). The glycolytic potential of genotype GG was significantly higher than that of other genotypes (p < 0.05). These results provide novel insight into the identification of functional SNPs in non-coding genomic regions.


Assuntos
Fibras Musculares Esqueléticas , Polimorfismo de Nucleotídeo Único , Humanos , Suínos , Animais , Camundongos , Fenótipo , Genótipo , Regiões Promotoras Genéticas
4.
Genomics ; 115(3): 110598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906188

RESUMO

Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.


Assuntos
Ciclídeos , MicroRNAs , Animais , RNA Circular/genética , Ciclídeos/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Músculos/metabolismo , Redes Reguladoras de Genes
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732090

RESUMO

Meox1 is a critical transcription factor that plays a pivotal role in embryogenesis and muscle development. It has been established as a marker gene for growth-specific muscle stem cells in zebrafish. In this study, we identified the SsMeox1 gene in a large teleost fish, Sebastes schlegelii. Through in situ hybridization and histological analysis, we discovered that SsMeox1 can be employed as a specific marker of growth-specific muscle stem cells, which originate from the somite stage and are primarily situated in the external cell layer (ECL) and myosepta, with a minor population distributed among muscle fibers. The knockdown of SsMeox1 resulted in a significant increase in Ccnb1 expression, subsequently promoting cell cycle progression and potentially accelerating the depletion of the stem cell pool, which ultimately led to significant growth retardation. These findings suggest that SsMeox1 arrests the cell cycle of growth-specific muscle stem cells in the G2 phase by suppressing Ccnb1 expression, which is essential for maintaining the stability of the growth-specific muscle stem cell pool. Our study provides significant insights into the molecular mechanisms underlying the indeterminate growth of large teleosts.


Assuntos
Proteínas de Peixes , Peixes , Desenvolvimento Muscular , Animais , Ciclo Celular/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Peixes/crescimento & desenvolvimento , Peixes/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612703

RESUMO

In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.


Assuntos
Antifibrinolíticos , MicroRNAs , RNA Longo não Codificante , Dourada , Animais , Aminoácidos , Dourada/genética , RNA Longo não Codificante/genética , Peptídeos Semelhantes à Insulina , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/genética , Mioblastos , RNA Mensageiro/genética , Sarcômeros
7.
Fish Physiol Biochem ; 50(2): 687-703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38285408

RESUMO

Skeletal muscle is the mainly edible part of fish. Eicosapentaenoic acid (EPA) is a crucial nutrient for fish. This study investigated the effect of EPA on the muscle development of grass carp along with the potential molecular mechanisms in vivo and in vitro. Muscle cells treated with 50 µM EPA in vitro showed the elevated proliferation, and the expression of mammalian target of rapamycin (mTOR) signaling pathway-related genes was upregulated (P < 0.05). In vivo experiments, 270 grass carp (27.92 g) were fed with one of the three experimental diets for 56 days: control diet (CN), 0.3% EPA-supplement diet (EPA), and the diet supplemented with 0.3% EPA and 30 mg/kg rapamycin (EPA + Rap). Fish weight gain rate (WGR) was improved in EPA group (P < 0.05). There was no difference in the viscerosomatic index (VSI) and body height (BH) among all groups (P > 0.05), whereas the carcass ratio (CR) and body length in the EPA group were obviously higher than those of other groups (P < 0.05), indicating that the increase of WGR was due to muscle growth. In addition, both muscle fiber density and muscle crude protein also increased in EPA group (P < 0.05). The principal component analysis showed that total weight of muscle amino acid in EPA group ranked first. Dietary EPA also increased protein levels of the total mTOR, S6k1, Myhc, Myog, and Myod in muscle (P < 0.05). In conclusion, EPA promoted the muscle development and nutritive value via activating the mTOR signaling pathway.


Assuntos
Carpas , Ácido Eicosapentaenoico , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análise , Carpas/metabolismo , Transdução de Sinais , Dieta , Músculo Esquelético/metabolismo , Proteínas Alimentares , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Desenvolvimento Muscular , Valor Nutritivo , Ração Animal/análise , Proteínas de Peixes/genética , Mamíferos/metabolismo
8.
Eur J Orthod ; 46(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364324

RESUMO

OBJECTIVE: Mouth breathing as a result of nasal obstruction affects craniofacial growth and development. This study aimed to investigate the effects of unilateral nasal obstruction and its recovery, along with the role of nitric oxide (NO) in masticatory muscle physiology. MATERIALS AND METHODS: Forty-eight 4-week-old male rats were divided into control and experimental groups. The five experimental groups were subjected to left-sided nasal obstruction by suturing the external nostril, and the sutures were removed after 1, 3, 5, 7, or 9 weeks to allow for varying recovery periods. We assessed morphological changes in masseter, temporalis, and digastric muscle, by examining cross-sectional area (CSA) and myosin heavy chain (MHC) isoform composition of muscle fibers. Reverse transcription-quantitative real-time polymerase chain reaction to measure messenger RNA (mRNA) levels for tumor necrosis factor-α (TNF-α), glucose transporter 4 (GLUT4), and neuronal nitric oxide synthase (nNOS) were conducted. RESULTS: The SpO2, CSA, and fibers showing MHC-2b isoforms were significantly lower, while RT-PCR showed higher mRNA levels in TNF-α and nNOS, and a decrease in GLUT4 mRNA in the jaw-closing muscles in the long-term nasal obstruction groups than that in the control group. LIMITATIONS: The study findings should be interpreted cautiously because of the functional differences between rodents and humans in terms of respiratory mechanisms. CONCLUSIONS: Unilateral nasal obstruction affects the morphology and contractile characteristics of the rat masticatory muscles during development, with possible involvement of NO in muscle hypofunction. These changes may revert to baseline levels if the nasal obstruction is eliminated before puberty in rats.


Assuntos
Obstrução Nasal , Humanos , Ratos , Masculino , Animais , Ratos Wistar , Fator de Necrose Tumoral alfa , Músculos da Mastigação , Cadeias Pesadas de Miosina/genética , RNA Mensageiro
9.
BMC Genomics ; 24(1): 239, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142996

RESUMO

BACKGROUND: N6-methyladenosine (m6A) refers to the methylation modification of N6 position of RNA adenine, a dynamic reversible RNA epigenetic modification that plays an important regulatory role in a variety of life processes. In this study, we used MeRIP-Seq and RNA-Seq of the longissimus dorsi (LD) muscle of adult (QA) and newborn (QN) Queshan Black pigs to screen key genes with m6A modification involved in muscle growth by bioinformatics analysis. RESULTS: A total of 23,445 and 25,465 m6A peaks were found in the whole genomes of QA and QN, respectively. Among them, 613 methylation peaks were significantly different (DMPs) and 579 genes were defined as differentially methylated genes (DMGs). Compared with the QN group, there were 1,874 significantly differentially expressed genes (DEGs) in QA group, including 620 up-regulated and 1,254 down-regulated genes. In order to investigate the relationship between m6A and mRNA expression in the muscle of Queshan Black pigs at different periods, a combined analysis of MeRIP-Seq and RNA-Seq showed that 88 genes were significantly different at both levels. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that DEGs and DMGs were mainly involved in skeletal muscle tissue development, FoxO signaling pathway, MAPK signaling pathway, insulin signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway. Four DEGs (IGF1R, CCND2, MYOD1 and FOS) and four DMGs (CCND2, PHKB, BIN1 and FUT2), which are closely related to skeletal muscle development, were selected as candidate genes for verification, and the results were consistent with the sequencing results, which indicated the reliability of the sequencing results. CONCLUSIONS: These results lay the foundation for understanding the specific regulatory mechanisms of growth in Queshan Black pigs, and provide theoretical references for further research on the role of m6A in muscle development and breed optimization selection.


Assuntos
RNA , Transcriptoma , Suínos/genética , Animais , Metilação , RNA/genética , Fosfatidilinositol 3-Quinases/genética , Reprodutibilidade dos Testes , Desenvolvimento Muscular/genética
10.
Crit Rev Food Sci Nutr ; 63(14): 1983-2003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34459311

RESUMO

The fundamental basis for the human function is provided by skeletal muscle. Advancing age causes selective fiber atrophy, motor unit loss, and hybrid fiber formation resulting in hampered mass and strength, thus referred to as sarcopenia. Influence on the loss of independence of aged adults, contribute toward inclined healthcare costs conveys the injurious impact. The current understating of age-related skeletal muscle changes are addressed in this review, and further discusses mechanisms regulating protein turnover, although they do not completely define the process yet. Moreover, the reduced capacity of muscle regeneration due to impairment of satellite cell activation and proliferation with neuronal, immunological, hormonal factors were brought into the light of attention. Nevertheless, complete understating of sarcopenia requires disentangling it from disuse and disease. Nutritional intervention is considered a potentially preventable factor contributing to sarcopenia. Seafood is a crucial player in the fight against hunger and malnutrition, where it consists of macro and micronutrients. Hence, the review shed light on seafood as a nutritional intrusion in the treatment and prevention of sarcopenia. Understanding multiple factors will provide therapeutic targets in the prevention, treatment, and overcoming adverse effects of sarcopenia.


Assuntos
Sarcopenia , Adulto , Humanos , Pessoa de Meia-Idade , Sarcopenia/prevenção & controle , Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Causalidade , Alimentos Marinhos
11.
Br J Nutr ; : 1-11, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246564

RESUMO

Se deficiency causes impaired growth of fish skeletal muscle due to the retarded hypertrophy of muscle fibres. However, the inner mechanisms remain unclear. According to our previous researches, we infer this phenomenon is associated with Se deficiency-induced high concentration of reactive oxygen species (ROS), which could suppress the target of rapamycin complex 1 (TORC1) pathway-mediated protein synthesis by inhibiting protein kinase B (Akt), an upstream protein of TORC1. To test this hypothesis, juvenile zebrafish (45 d post-fertilisation) were fed a basal Se-adequate diet or a basal Se-deficient diet or them supplemented with an antioxidant (DL-α-tocopherol acetate, designed as VE) or a TOR activator (MHY1485) for 30 d. Zebrafish fed Se-deficient diets exhibited a clear Se-deficient status in skeletal muscle, which was not influenced by dietary VE and MHY1485. Se deficiency significantly elevated ROS concentrations, inhibited Akt activity and TORC1 pathway, suppressed protein synthesis in skeletal muscle, and impaired hypertrophy of skeletal muscle fibres. However, these negative effects of Se deficiency were partly (except that on ROS concentration) alleviated by dietary MHY1485 and completely alleviated by dietary VE. These data strongly support our speculation that Se deficiency-induced high concentration of ROS exerts a clear inhibiting effect on TORC1 pathway-mediated protein synthesis by regulating Akt activity, thereby restricting the hypertrophy of skeletal muscle fibres in fish. Our findings provide a mechanistic explanation for Se deficiency-caused retardation of fish skeletal muscle growth, contributing to a better understanding of the nutritional necessity and regulatory mechanisms of Se in fish muscle physiology.

12.
J Nanobiotechnology ; 21(1): 304, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644475

RESUMO

Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.


Assuntos
Vesículas Extracelulares , Leite Humano , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases S6 Ribossômicas 70-kDa , Músculos , Serina-Treonina Quinases TOR , Desempenho Físico Funcional , Aminoácidos , Transdução de Sinais
13.
Genomics ; 114(5): 110477, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36058475

RESUMO

Fish exhibit different muscle structures and growth characteristics compared with mammals. We used a spatial transcriptomics approach and examined myotomal muscle sections from zebrafish. Adult muscles were divided into eight regions according to spatial gene expression characteristics. Slow muscle was located in the wedge-shaped region near the lateral line and at the base of the dorsal fin, intermediate muscle was located in a ribbon-shaped region adjacent to slow muscle, and fast muscle was located in the deep region of the trunk, surrounded by intermediate muscle; the interior of fast muscle was further divided into 6 parts by their transcriptomic features. Combined analysis of adult and larval data revealed that adult muscles contain specific regions similar to larval muscles. These regions showed active myogenesis and a high expression of genes associated with muscle hyperplasia. This is the first study to apply spatial transcriptomics to fish myotomal muscle structure and growth.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Larva , Mamíferos , Desenvolvimento Muscular/genética , Músculos , Peixe-Zebra/genética
14.
Genomics ; 114(4): 110393, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643324

RESUMO

Catla (Catla catla) is the fastest growing Indian major carp species and forms an important component of the freshwater aquaculture systems in the Indian sub-continent. The molecular mechanisms of growth of the species in response to seasonal water temperature variations hitherto are still unknown. In the current study, high-throughput transcriptome sequencing was used to study the differential gene expression pattern in catla muscle tissues between pre-winter and post-winter fingerling groups and fast-growing table size fish. Transcriptome analysis identified 1677 differentially expressed genes (DEGs) in three different growth stages and 236 common DEGs between fingerling at low temperature and table fish post-winter, including four genes under GH/IGF1 axis and 163 genes under signature for compensatory muscle growth. Molecular pathways for the mapped genes identified 42 KEGG pathways and the critical pathways under Environmental Information Processing identified were PI3K-Akt signaling, AMPK signaling pathway, Calcium signaling pathway and MAPK signaling pathway. In this study, 14 differentially expressed potential regulatory hub genes for growth were identified, for the first time and categorized into three major GO groups: unfolded protein binding, rNA processing and biogenesis and muscle development and differentiation. These regulatory hub genes, except acta1, were found to be upregulated in fast-growing table size and post-winter fingerling groups. The results provided valuable information about the key genes, with potential to be used as biomarkers of growth in breeding programs and contributed to our understanding of the molecular mechanisms and pathways regulating muscle growth, in response to temperature fluctuations and different growth stages in C. catla.


Assuntos
Carpas , Cyprinidae , Animais , Carpas/genética , Cyprinidae/genética , Perfilação da Expressão Gênica , Músculos , Fosfatidilinositol 3-Quinases/genética , Transcriptoma
15.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768324

RESUMO

Blue whiting (BW) represents an underutilised fish species containing a high-quality protein and amino acid (AA) profile with numerous potentially bioactive peptide sequences, making BW an economic and sustainable alternative source of protein. This study investigated the impact of three different BW protein hydrolysates (BWPH-X, Y and Z) on growth, proliferation and muscle protein synthesis (MPS) in skeletal muscle (C2C12) myotubes. BWPHs were hydrolysed using different enzymatic and heat exposures and underwent simulated gastrointestinal digestion (SGID), each resulting in a high degree of hydrolysis (33.41-37.29%) and high quantities of low molecular mass peptides (86.17-97.12% <1 kDa). C2C12 myotubes were treated with 1 mg protein equivalent/mL of SGID-BWPHs for 4 h. Muscle growth and myotube thickness were analysed using an xCelligence™ platform. Anabolic signalling (phosphorylation of mTOR, rpS6 and 4E-BP1) and MPS measured by puromycin incorporation were assessed using immunoblotting. BWPH-X significantly increased muscle growth (p < 0.01) and myotube thickness (p < 0.0001) compared to the negative control (amino acid and serum free media). Muscle protein synthesis (MPS), as measured by puromycin incorporation, was significantly higher after incubation with BWPH-X compared with the negative control, but did not significantly change in response to BWPH-Y and Z treatments. Taken together, these preliminary findings demonstrate the anabolic potential of some but not all BWPHs on muscle enhancement, thus providing justification for human dietary intervention studies to confirm and translate the results of such investigations to dietary recommendations and practices.


Assuntos
Proteínas Alimentares , Gadiformes , Músculo Esquelético , Hidrolisados de Proteína , Animais , Humanos , Aminoácidos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Hidrolisados de Proteína/metabolismo , Puromicina , Proteínas Alimentares/metabolismo , Gadiformes/metabolismo
16.
BMC Genomics ; 23(1): 348, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524183

RESUMO

BACKGROUND: CRISPR/Cas9-based genome-editing systems have been used to efficiently engineer livestock species with precise genetic alterations intended for biomedical and agricultural applications. Previously, we have successfully generated gene-edited sheep and goats via one-cell-stage embryonic microinjection of a Cas9 mRNA and single-guide RNAs (sgRNAs) mixture. However, most gene-edited animals produced using this approach were heterozygotes. Additionally, non-homozygous gene-editing outcomes may not fully generate the desired phenotype in an efficient manner. RESULTS: We report the optimization of a Cas9 mRNA-sgRNA delivery system to efficiently generate homozygous myostatin (MSTN) knockout sheep for improved growth and meat production. Firstly, an sgRNA selection software (sgRNAcas9) was used to preliminarily screen for highly efficient sgRNAs. Ten sgRNAs targeting the MSTN gene were selected and validated in vitro using sheep fibroblast cells. Four out of ten sgRNAs (two in exon 1 and two in exon 2) showed a targeting efficiency > 50%. To determine the optimal CRISPR/Cas9 microinjection concentration, four levels of Cas9 mRNA and three levels of sgRNAs in mixtures were injected into sheep embryos. Microinjection of 100 ng/µL Cas9 mRNA and 200 ng/µL sgRNAs resulted in the most improved targeting efficiency. Additionally, using both the highly efficient sgRNAs and the optimal microinjection concentration, MSTN-knockout sheep were generated with approximately 50% targeting efficiency, reaching a homozygous knockout efficiency of 25%. Growth rate and meat quality of MSTN-edited lambs were also investigated. MSTN-knockout lambs exhibited increased body weight and average daily gain. Moreover, pH, drip loss, intramuscular fat, crude protein, and shear force of gluteal muscles of MSTN-knockout lambs did not show changes compared to the wild-type lambs. CONCLUSIONS: This study highlights the importance of in vitro evaluation for the optimization of sgRNAs and microinjection dosage of gene editing reagents. This approach enabled efficient engineering of homozygous knockout sheep. Additionally, this study confirms that MSTN-knockout lambs does not negatively impact meat quality, thus supporting the adoption of gene editing as tool to improve productivity of farm animals.


Assuntos
Sistemas CRISPR-Cas , Miostatina , Animais , Edição de Genes/métodos , Cabras/genética , Carne , Miostatina/genética , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro , Ovinos/genética
17.
J Anat ; 240(5): 991-997, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34914097

RESUMO

Muscle size is an important determinant of muscular fitness and health, and so it is important to have accurate estimates of actual muscle growth in children. This study compared actual versus age-predicted growth rates of the medial gastrocnemius (MG) muscle in young children over a 12-month period. Three-dimensional ultrasound was used to measure MG length and volume in 50 children (mean ± standard deviation [SD] age = 70.3 ± 29.9 months) to establish age-predicted muscle growth rates using a least-squares linear regression. Twenty children (mean ± SD age = 78.5 ± 27.2 months) were followed up at 6 and 12 months to establish actual muscle growth of MG volume and length. These data were then compared to their age-predicted muscle growth from the linear regression equation using paired t-tests and Bland-Altman limits of agreement method. Age-predicted MG growth significantly underestimated actual muscle growth for both volume and length at each timepoint. On average, actual muscle volume and length were 11.5% and 21.5% greater than the age-predicted volume and length respectively. Caution is warranted when predicting future muscle size in young children based solely on age.


Assuntos
Paralisia Cerebral , Criança , Pré-Escolar , Humanos , Músculo Esquelético/diagnóstico por imagem , Ultrassonografia
18.
J Nutr ; 152(1): 117-129, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610138

RESUMO

BACKGROUND: Leucine has unique anabolic properties, serving as a nutrient signal that stimulates muscle protein synthesis. OBJECTIVE: We tested whether the leucine concentration is the only factor determining protein quality for muscle development. METHODS: We selected 3 dietary proteins: casein (CAS), egg white protein (EWP), and albumin (ALB), representing the leucine concentrations of ∼8.3%, 7.7%, and 6.7% of the total protein (wt:wt), respectively. In the chronic feeding experiment, these proteins were pair-fed to growing male Wistar rats [110-135 g body weight (BW)] for 14 d as a protein source, providing 10% of total energy intake, after which soleus and extensor digitorum longus (EDL) muscles were used to estimate muscle growth. In the acute administration experiment, we injected CAS, ALB, and EWP to rats by oral gavage (0.3 g protein/100 g BW), and after 1 or 3 h EDL muscle was excised for capillary electrophoresis-MS-based metabolomics. In another chronic feeding experiment, rats were pair-fed either CAS or a CAS diet supplemented with arginine to the same level as in the EWP diet for 14 d. RESULTS: At the end of the 14-d feeding, soleus and EDL muscle weight was 20% and 17% higher, respectively, when rats were fed EWP as compared with CAS (P < 0.05). In addition, the 14-d EWP diet increased the expression of p70S6K by 117% compared with CAS (P < 0.05). These results suggest the possibility that some amino acids (excluding leucine), derived from EWP, promote muscle growth. Metabolomics analysis showed that muscle arginine concentration, following acute protein administration, appeared to match muscle growth over the 14-d feeding period. In addition, 14-d arginine supplementation to a CAS diet increased EDL muscle weight by 15% when compared with the plain CAS diet (P < 0.05). CONCLUSIONS: EWP promotes rat developmental muscle growth compared with CAS, which can be partly explained by the arginine-rich EWP.


Assuntos
Proteínas Musculares , Roedores , Animais , Proteínas do Ovo , Leucina/metabolismo , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Roedores/metabolismo
19.
FASEB J ; 35(1): e21166, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184921

RESUMO

An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid ß-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Ingestão de Alimentos , Comportamento Alimentar , Obesidade , Animais , Masculino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Coelhos
20.
Br J Nutr ; 127(12): 1761-1773, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321122

RESUMO

The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82-39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.


Assuntos
Antioxidantes , Peixes-Gato , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Triptofano , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peixes-Gato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dieta , Músculos/metabolismo , Proteínas Musculares/metabolismo , RNA Mensageiro , Ração Animal/análise , Proteínas de Peixes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA