Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699818

RESUMO

Little is known regarding the precise muscle, bone and joint actions resulting from individual and simultaneous muscle activation(s) of the lower limb. An in situ experimental approach is described herein to control the muscles of the rabbit lower hindlimb, including the medial and lateral gastrocnemius, soleus, plantaris and tibialis anterior. The muscles were stimulated using nerve-cuff electrodes placed around the innervating nerves of each muscle. Animals were fixed in a stereotactic frame with the ankle angle set at 90 deg. To demonstrate the efficacy of the experimental technique, isometric plantarflexion torque was measured at the 90 deg ankle joint angle at a stimulation frequency of 100, 60 and 30 Hz. Individual muscle torque and the torque produced during simultaneous activation of all plantarflexor muscles are presented for four animals. These results demonstrate that the experimental approach was reliable, with insignificant variation in torque between repeated contractions. The experimental approach described herein provides the potential for measuring a diverse array of muscle properties, which is important to improve our understanding of musculoskeletal biomechanics.


Assuntos
Membro Posterior , Músculo Esquelético , Torque , Animais , Coelhos , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Membro Posterior/fisiologia , Fenômenos Biomecânicos , Estimulação Elétrica , Masculino
2.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960596

RESUMO

In this study, to establish the biomechanical characteristics of commercial vehicle drivers' muscles and bones while operating the three pedals, a driver pedal-operation simulator was built, and the real-life situation was reconstructed in OpenSim 3.3 software. We set up three seat heights to investigate the drivers' lower limbs, and the research proceeded in two parts: experiment and simulation. Chinese adult males in the 95th percentile were selected as the research participants. In the experiment, Delsys wireless surface electromyography (EMG) sensors were used to collect the EMG signals of the four main muscle groups of the lower limbs when the drivers operated the three pedals. Then, we analyzed the muscle activation and the degree of muscle fatigue. The simulation was based on OpenSim software to analyze the driver's lower limb joint angles and joint torque. The results show that the activation of the hamstrings, gastrocnemius, and rectus femoris muscles were higher in the four muscle groups. In respect of torque, in most cases, hip joint torque > knee joint torque > ankle joint torque. The knee joint angles were the largest, and the ankle joint angles changed the most. The experimental results provide a reference for improving drivers' handling comfort in commercial vehicles and provide theoretical bases for cab design and layout optimization.


Assuntos
Extremidade Inferior , Músculo Esquelético , Masculino , Adulto , Humanos , Fenômenos Biomecânicos , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Articulação do Joelho/fisiologia , Eletromiografia , Torque
3.
J Appl Biomech ; 37(5): 415-424, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453018

RESUMO

Estimating center of mass (COM) through sensor measurements is done to maintain walking and standing stability with exoskeletons. The authors present a method for estimating COM kinematics through an artificial neural network, which was trained by minimizing the mean squared error between COM displacements measured by a gold-standard motion capture system and recorded acceleration signals from body-mounted accelerometers. A total of 5 able-bodied participants were destabilized during standing through: (1) unexpected perturbations caused by 4 linear actuators pulling on the waist and (2) volitionally moving weighted jars on a shelf. Each movement type was averaged across all participants. The algorithm's performance was quantified by the root mean square error and coefficient of determination (R2) calculated from both the entire trial and during each perturbation type. Throughout the trials and movement types, the average coefficient of determination was 0.83, with 89% of the movements with R2 > .70, while the average root mean square error ranged between 7.3% and 22.0%, corresponding to 0.5- and 0.94-cm error in both the coronal and sagittal planes. COM can be estimated in real time for balance control of exoskeletons for individuals with a spinal cord injury, and the procedure can be generalized for other gait studies.


Assuntos
Marcha , Equilíbrio Postural , Acelerometria , Fenômenos Biomecânicos , Humanos , Caminhada
4.
Front Physiol ; 15: 1443675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148742

RESUMO

Understanding tendon mechanical properties, such as stiffness and hysteresis, can provide insights into injury mechanisms. This research addresses the inconsistency of previously reported in-vivo and in-vitro tendon hysteresis properties. Although limited, our preliminary findings suggest that in-vivo hystereses (Mean ± SD; 55% ± 9%) are greater than in-vitro hystereses (14% ± 1%) when directly comparing the same tendon for the same loading conditions in a sheep model in-vivo versus within 24 h post-mortem. Overall, it therefore appears that the tendon mechanical properties are affected by the testing environment, possibly related to differences in muscle-tendon interactions and fluid flow experienced in-vivo versus in-vitro. This communication advocates for more detailed investigations into the mechanisms resulting in the reported differences in tendon behaviour. Overall, such knowledge contributes to our understanding of tendon function towards improving modelling and clinical interventions, bridging the gap between in-vivo and in-vitro observations and enhancing the translational relevance of biomechanical studies.

5.
Ann Biomed Eng ; 51(1): 10-23, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36104640

RESUMO

There is a growing interest in the use of virtual representations of the knee for musculoskeletal research and clinical decision making, and to generate digital evidence for design and regulation of implants. Accessibility to previously developed models and related digital assets can dramatically reduce barriers to entry to conduct simulation-based studies of the knee joint and therefore help accelerate scientific discovery and clinical innovations. Development of models for finite element analysis is a demanding process that is both time consuming and resource intensive. It necessitates expertise to transform raw data to reliable virtual representations. Modeling and simulation workflow has many processes such as image segmentation, surface geometry generation, mesh generation and finally, creation of a finite element representation with relevant loading and boundary conditions. The outcome of the workflow is not only the end-point knee model but also many other digital by-products. When all of these data, derivate assets, and tools are freely and openly accessible, researchers can bypass some or all the steps required to build models and focus on using them to address their research goals. With provenance to specimen-specific anatomical and mechanical data and traceability of digital assets throughout the whole lifecycle of the model, reproducibility and credibility of the modeling practice can be established. The objective of this study is to disseminate Open Knee(s), a cohort of eight knee models (and relevant digital assets) for finite element analysis, that are based on comprehensive specimen-specific imaging data. In addition, the models and by-products of modeling workflows are described along with model development strategies and tools. Passive flexion served as a test simulation case, demonstrating an end-user application. Potential roadmaps for reuse of Open Knee(s) are also discussed.


Assuntos
Articulação do Joelho , Joelho , Humanos , Análise de Elementos Finitos , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia
6.
Am J Sports Med ; 50(2): 554-562, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33739889

RESUMO

BACKGROUND: While a large number of studies have investigated the anatomic, hormonal, and biomechanical risk factors related to musculoskeletal (MSK) injury risk, there is growing evidence to suggest that cognition is an important injury contributor in the athletic population. A systematic review of the available evidence regarding the influence of cognitive performance on MSK injury risk has yet to be published in the sports medicine literature. PURPOSE/HYPOTHESIS: The purpose was to determine the effects of cognition on (1) MSK biomechanics during sports-specific tasks and (2) MSK injury occurrence in the athletic population. It was hypothesized that athletes with lower cognitive performance would demonstrate biomechanical patterns suggestive of MSK injury risk and that injured athletes would perform worse on baseline measures of cognition as compared with their noninjured counterparts. STUDY DESIGN: Systematic review. METHODS: PubMed and SPORTDiscus were searched from January 2000 to January 2020. Manual searches were performed on the reference lists of the included studies. A search of the literature was performed for studies published in English that reported MSK biomechanics as a function of cognitive performance and MSK injury occurrence after baseline measures of cognition. Two independent reviewers extracted pertinent study data in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2009 guidelines and assessed study quality using the Quality Assessment Tool for Observational Cohort and Cross-sectional Studies from the National Institutes of Health. A meta-analysis was not performed, owing to the heterogeneous nature of the study designs. RESULTS: Ten studies met inclusion criteria: 4 cognition-MSK biomechanics studies and 6 cognition-MSK injury studies. All 4 cognition-MSK biomechanics studies demonstrated that worse performance on measures of cognition was associated with lower extremity MSK biomechanical patterns suggestive of greater risk for MSK injury. The majority of the cognition-MSK injury studies demonstrated that injured athletes significantly differed on baseline cognition measures versus matched controls or that cognitive performance was a significant predictor for subsequent MSK injury. CONCLUSION: Although the literature exploring cognitive contributions to MSK injury risk is still in its infancy, it is suggested that sports medicine personnel conduct baseline assessments of cognition-in particular, reaction time and working memory-to identify which athletes may be at elevated risk for future MSK injury.


Assuntos
Traumatismos em Atletas , Sistema Musculoesquelético , Atletas , Traumatismos em Atletas/epidemiologia , Cognição , Estudos Transversais , Humanos
7.
J Biomech ; 79: 21-30, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30197151

RESUMO

Squats are a common lower extremity task used in strength and conditioning, balance training, and rehabilitation. It is important to understand how slight alterations in lower extremity kinematics during a squat affect the internal joint loading of the knee. This study directly quantified tibiofemoral contact throughout the in vitro simulation of a bodyweight back squat performed two ways: a heel squat (knees in line with toes) and a toe squat (knees anterior to the toes) at peak knee flexion. Three cadaveric right lower extremities were instrumented and positioned into the University of Texas Joint Load Simulator. Kinematics, kinetics, and predicted muscle forces from a 20-year-old athletic male performing the two back squats were used as inputs for the in vitro simulations. The quantified tibiofemoral contact area, peak pressure, net force, and center of pressure location were significantly different between squat types (p > 0.05). Net contact area on the tibial plateau at peak knee flexion was significantly larger in the heel versus toe squat (599 ±â€¯80 mm2 vs. 469 ±â€¯125 mm2; p < 0.05). Peak lateral pressure was significantly higher in the heel versus toe squat (2.73 ±â€¯0.54 MPa vs. 0.87 ±â€¯0.56 MPa; p < 0.05). Results suggest the heel squat generates an even load distribution, which is less likely to affect joint degeneration. Future in vitro simulations should quantify the effects lower extremity kinematics, kinetics, and individual muscle forces have on tibiofemoral contact parameters during common athletic tasks.


Assuntos
Articulação do Joelho/fisiologia , Adulto , Fenômenos Biomecânicos , Peso Corporal , Calcanhar , Humanos , Técnicas In Vitro , Joelho , Extremidade Inferior/fisiologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Postura , Pressão , Rotação , Tíbia/fisiologia , Suporte de Carga , Adulto Jovem
8.
Clin Biomech (Bristol, Avon) ; 30(8): 839-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26139549

RESUMO

BACKGROUND: Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. METHODS: A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. FINDINGS: Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). INTERPRETATION: These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations.


Assuntos
Condução de Veículo , Força Muscular , Músculo Esquelético/fisiologia , Manguito Rotador/fisiologia , Articulação do Ombro/fisiologia , Ombro/fisiologia , Adulto , Traumatismos do Braço/prevenção & controle , Traumatismos do Braço/reabilitação , Fenômenos Biomecânicos , Humanos , Masculino , Fenômenos Mecânicos , Movimento , Postura , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA