Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(5): 831-846.e14, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176228

RESUMO

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Assuntos
Microbioma Gastrointestinal , Micobioma , Receptores de Interleucina-17/metabolismo , Comportamento Social , Animais , Fungos , Imunidade nas Mucosas , Mucosa Intestinal , Camundongos , Mucosa
2.
Immunity ; 49(3): 504-514.e4, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231984

RESUMO

The adaptor protein CARD9 links detection of fungi by surface receptors to the activation of the NF-κB pathway. Mice deficient in CARD9 exhibit dysbiosis and are more susceptible to colitis. Here we examined the impact of Card9 deficiency in the development of colitis-associated colon cancer (CAC). Treatment of Card9-/- mice with AOM-DSS resulted in increased tumor loads as compared to WT mice and in the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissue. The impaired fungicidal functions of Card9-/- macrophages led to increased fungal loads and variation in the overall composition of the intestinal mycobiota, with a notable increase in C. tropicalis. Bone marrow cells incubated with C. tropicalis exhibited MDSC features and suppressive functions. Fluconazole treatment suppressed CAC in Card9-/- mice and was associated with decreased MDSC accumulation. The frequency of MDSCs in tumor tissues of colon cancer patients correlated positively with fungal burden, pointing to the relevance of this regulatory axis in human disease.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Colite/imunologia , Neoplasias do Colo/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Células Supressoras Mieloides/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/genética , Neoplasias do Colo/genética , Disbiose/genética , Humanos , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/microbiologia , Regiões Promotoras Genéticas/genética
3.
Mol Med ; 30(1): 122, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135000

RESUMO

BACKGROUND: Current therapy for patients suffering from inflammatory bowel diseases (IBD) is focused on inflammatory mechanisms exclusively and not the dysbiotic microbiota, despite growing evidence implicating a role for intestinal microbes in disease. MAIN BODY: Ongoing research into the intestinal microbiota of IBD patients, using new technologies and/or deeper application of existing ones, has identified a number of microorganisms whose properties and behaviors warrant consideration as causative factors in disease. Such studies have implicated both bacteria and fungi in the pathogenesis of disease. Some of these organisms manifest mechanisms that should be amenable to therapeutic intervention via either conventional or novel drug discovery platforms. Of particular note is a deeper characterization of microbial derived proteases and their destructive potential. CONCLUSION: Given the steady progress on the mechanistic role of the microbiota in inflammatory diseases, it is reasonable to anticipate a future in which therapeutics targeting microbial derived pathogenic factors play an important role in improving the lives of IBD patients.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo
4.
Yeast ; 41(5): 330-348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450792

RESUMO

Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.


Assuntos
Biodiversidade , Insetos , Leveduras , Insetos/microbiologia , Animais , Leveduras/classificação , Leveduras/fisiologia , Leveduras/genética , África Austral , Fermentação , Simbiose , Microbiologia Industrial
5.
BMC Microbiol ; 24(1): 141, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658829

RESUMO

BACKGROUND: Recent studies have more focused on gut microbial alteration in tuberculosis (TB) patients. However, no detailed study on gut fungi modification has been reported till now. So, current research explores the characteristics of gut microbiota (bacteria)- and mycobiota (fungi)-dysbiosis in TB patients and also assesses the correlation between the gut microbiome and serum cytokines. It may help to screen the potential diagnostic biomarker for TB. RESULTS: The results show that the alpha diversity of the gut microbiome (including bacteria and fungi) decreased and altered the gut microbiome composition of TB patients. The bacterial genera Bacteroides and Prevotella were significantly increased, and Blautia and Bifidobacterium decreased in the TB patients group. The fungi genus Saccharomyces was increased while decreased levels of Aspergillus in TB patients. It indicates that gut microbial equilibrium between bacteria and fungi has been altered in TB patients. The fungal-to-bacterial species ratio was significantly decreased, and the bacterial-fungal trans-kingdom interactions have been reduced in TB patients. A set model including Bacteroides, Blautia, Eubacterium_hallii_group, Apiotrichum, Penicillium, and Saccharomyces may provide a better TB diagnostics option than using single bacterial or fungi sets. Also, gut microbial dysbiosis has a strong correlation with the alteration of IL-17 and IFN-γ. CONCLUSIONS: Our results demonstrate that TB patients exhibit the gut bacterial and fungal dysbiosis. In the clinics, some gut microbes may be considered as potential biomarkers for auxiliary TB diagnosis.


Assuntos
Bactérias , Disbiose , Fungos , Microbioma Gastrointestinal , Humanos , Disbiose/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Masculino , Feminino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Adulto , Pessoa de Meia-Idade , Tuberculose/microbiologia , Tuberculose/complicações , Fezes/microbiologia , Citocinas/sangue , Interleucina-17/sangue
6.
Cancer Invest ; 42(1): 44-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186047

RESUMO

Although not as well studied as the bacterial component of the human microbiota, the commensal fungi or mycobiota play important roles in maintaining our health by augmenting our immune system. This mycobiota is also associated with various fatal diseases like opportunistic mycoses, and even cancer, with different cancers having respective type-specific mycobiota. The different fungal species which comprise these different intratumoral mycobiota play important roles in cancer progression. The aim of this review paper is to decipher the association between mycobiota and cancer, and shed light on new avenues in cancer diagnosis, and the development of new anti-cancer therapeutics.


Assuntos
Micoses , Neoplasias , Humanos , Fungos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
7.
Microb Ecol ; 87(1): 79, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814337

RESUMO

Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.


Assuntos
Bactérias , Fungos , RNA Ribossômico 16S , Tartarugas , Animais , Tartarugas/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiota , Cloaca/microbiologia , Micobioma , Biodiversidade , Microbioma Gastrointestinal , Biofilmes
8.
Crit Care ; 28(1): 133, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649970

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is responsible for 400,000 deaths annually worldwide. Few improvements have been made despite five decades of research, partially because ARDS is a highly heterogeneous syndrome including various types of aetiologies. Lower airway microbiota is involved in chronic inflammatory diseases and recent data suggest that it could also play a role in ARDS. Nevertheless, whether the lower airway microbiota composition varies between the aetiologies of ARDS remain unknown. The aim of this study is to compare lower airway microbiota composition between ARDS aetiologies, i.e. pulmonary ARDS due to influenza, SARS-CoV-2 or bacterial infection. METHODS: Consecutive ARDS patients according to Berlin's classification requiring invasive ventilation with PCR-confirmed influenza or SARS-CoV-2 infections and bacterial infections (> 105 CFU/mL on endotracheal aspirate) were included. Endotracheal aspirate was collected at admission, V3-V4 and ITS2 regions amplified by PCR, deep-sequencing performed on MiSeq sequencer (Illumina®) and data analysed using DADA2 pipeline. RESULTS: Fifty-three patients were included, 24 COVID-19, 18 influenza, and 11 bacterial CAP-related ARDS. The lower airway bacteriobiota and mycobiota compositions (ß-diversity) were dissimilar between the three groups (p = 0.05 and p = 0.01, respectively). The bacterial α-diversity was significantly lower in the bacterial CAP-related ARDS group compared to the COVID-19 ARDS group (p = 0.04). In contrast, influenza-related ARDS patients had higher lung mycobiota α-diversity than the COVID-19-related ARDS (p = 0 < 01). CONCLUSION: Composition of lower airway microbiota (both microbiota and mycobiota) differs between influenza, COVID-19 and bacterial CAP-related ARDS. Future studies investigating the role of lung microbiota in ARDS pathophysiology should take aetiology into account.


Assuntos
COVID-19 , Influenza Humana , Microbiota , Síndrome do Desconforto Respiratório , Humanos , COVID-19/microbiologia , COVID-19/complicações , COVID-19/fisiopatologia , Síndrome do Desconforto Respiratório/microbiologia , Síndrome do Desconforto Respiratório/virologia , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Influenza Humana/microbiologia , Influenza Humana/fisiopatologia , Influenza Humana/complicações , Microbiota/fisiologia , Idoso , Infecções Bacterianas/microbiologia
9.
Mycopathologia ; 189(4): 49, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864956

RESUMO

Aspergillosis encompasses a wide range of clinical conditions based on the interaction between Aspergillus and the host. It ranges from colonization to invasive aspergillosis. The human lung provides an entry door for Aspergillus. Aspergillus has virulence characteristics such as conidia, rapid growth at body temperature, and the production of specific proteins, carbohydrates, and secondary metabolites that allow A. fumigatus to infiltrate the lung's alveoli and cause invasive aspergillosis. Alveolar epithelial cells play an important role in both fungus clearance and immune cell recruitment via cytokine release. Although the innate immune system quickly clears conidia in immunocompetent hosts, A. fumigatus has evolved multiple virulence factors in order to escape immune response such as ROS detoxifying enzymes, the rodlet layer, DHN-melanin and toxins. Bacterial co-infections or interactions can alter the immune response, impact Aspergillus growth and virulence, enhance biofilm formation, confound diagnosis, and reduce treatment efficacy. The gut microbiome's makeup influences pulmonary immune responses generated by A. fumigatus infection and vice versa. The real-time PCR for Aspergillus DNA detection might be a particularly useful tool to diagnose pulmonary aspergillosis. Metagenomics analyses allow quick and easy detection and identification of a great variety of fungi in different clinical samples, although optimization is still required particularly for the use of NGS techniques. This review will analyze the current state of aspergillosis in light of recent discoveries in the microbiota and mycobiota.


Assuntos
Aspergilose , Micobioma , Humanos , Aspergilose/microbiologia , Aspergilose/diagnóstico , Aspergilose/imunologia , Aspergillus fumigatus/patogenicidade , Aspergillus fumigatus/genética , Aspergillus fumigatus/imunologia , Aspergillus/genética , Aspergillus/patogenicidade , Fatores de Virulência/genética , Microbiota , Virulência , Metagenômica , Interações Hospedeiro-Patógeno/imunologia
10.
J Basic Microbiol ; 64(3): e2300461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115562

RESUMO

Fungal communities colonizing Ophiocordyceps spp. plays a crucial ecological role in their natural habitat, contributing to infect the host larvae, and influencing their occurrence. Although associated fungi with the newly described Ophiocordyceps indica, from the Indian Western Himalaya remains unclear. Therefore, we untangled the culturable fungal communities associated with O. indica and soil adhered to it, collected from low-height areas of Himachal Pradesh, India. The study resulted in the identification of 111 fungal isolates representing 17 families, with maximum fungal isolates (36.03%) within Cordycipitaceae. Interestingly, a total of 24 genera were found associated with O. indica and adhered soil, of which 12 were common, 8 were exclusive to O. indica and 4 were only limited to soil. Additionally, the influence of soil physicochemical parameters on fungal diversity indices revealed a positive correlation with humidity and available nitrogen and a negative correlation with pH and available phosphorus. These findings provide insights into the culturable fungal diversity of O. indica and the soil adhering to it, thus can contribute to the understanding of host-microbial interactions. Furthermore, these associations can be explored as a source of bioactive metabolites to combat the unending industrial demands.


Assuntos
Hypocreales , Micobioma , Humanos , Himalaia , Ecossistema , Solo , Microbiologia do Solo
11.
J Allergy Clin Immunol ; 152(3): 748-759.e3, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169153

RESUMO

BACKGROUND: Secretory IgA interacts with commensal bacteria, but its impact on human mycobiota ecology has not been widely explored. In particular, whether human IgA-deficiency is associated with gut fungal dysbiosis remains unknown. OBJECTIVES: Our goal was to study the impact of IgA on gut mycobiota ecology. METHODS: The Fungi-Flow method was used to characterize fecal, systemic, and maternal IgA, IgM, and IgG responses against 14 representative fungal strains (yeast/spores or hyphae forms) in healthy donors (HDs) (n = 34, 31, and 20, respectively) and to also compare gut mycobiota opsonization by secretory antibodies in HDs (n = 28) and patients with selective IgA deficiency (SIgAd) (n = 12). Stool mycobiota composition was determined by internal transcribed spacer gene sequencing in HDs (n = 23) and patients with SIgAd (n = 17). Circulating CD4+ T-cell cytokine secretion profiles were determined by intracellular staining. The impact of secretory IgA, purified from breast milk (n = 9), on Candidaalbicans growth and intestinal Caco-2 cell invasion was tested in vitro. RESULTS: Homeostatic IgA binds commensal fungi with a body fluid-selective pattern of recognition. In patients with SIgAd, fungal gut ecology is preserved by compensatory IgM binding to commensal fungi. Gut Calbicans overgrowth nevertheless occurs in this condition but only in clinically symptomatic patients with decreased TH17/TH22 T-cell responses. Indeed, secretory IgA can reduce in vitro budding and invasion of intestinal cells by Calbicans and therefore exert control on this pathobiont. CONCLUSION: IgA has a selective impact on Calbicans ecology to preserve fungal-host mutualism.


Assuntos
Candida albicans , Deficiência de IgA , Feminino , Humanos , Células CACO-2 , Imunoglobulina A , Imunoglobulina A Secretora , Imunoglobulina M
12.
J Sci Food Agric ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975814

RESUMO

BACKGROUND: Chestnut fruit quality is affected by fungal contamination. The study of the patterns of contamination in the postharvest is crucial to individuate the critical phases and propose solutions. To understand how fungal colonization varies on fruits, the composition of mycobiota was investigated in postharvest handling and in between tissues (shell and kernel). RESULTS: Fungal sequences were clustered into 308 operational taxonomic units (OTUs). Biodiversity was higher in shell than kernel tissues. Results evidenced the risk of new contamination in specific phases such as the 'cold bath' and storage. Genera known as mycotoxin producers were detected in all phases. Specifically, 47 OTUs belonging to Penicillium, eight to Fusarium and two to Aspergillus genera were identified. While Fusarium spp. was sensitive to 'warm bath' phase, Penicillium spp. was largely insensitive and accumulated in storage conditions. Surprisingly, Aspergillus spp. was poorly represented. Aflatoxin, ochratoxin A, fumonisins and T-2/HT-2 detection was performed for shell and kernel, and process phases. Higher contamination was observed on shell than in kernel samples. While aflatoxins were within the European Union (EU) limits for dry fruits, Ochratoxin exceeded the EU limits. The present study represents the first report of fumonisins and T-2/HT-2 detection in chestnuts. CONCLUSION: Fungal contamination taxa is high in chestnut fruits following postharvest handling and storage. A parametrization of process phases such as the 'warm bath' is functional to reduce the risk for some taxa. For other spoilage and mycotoxigenic genera strict sanitation procedures of equipment and water must be individuated and implemented to reduce their impact. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
Gastroenterology ; 163(4): 908-921, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724733

RESUMO

BACKGROUND & AIMS: The enteric mycobiota is a major component of the human gut microbiota, but its role in colorectal cancer (CRC) remains largely elusive. We conducted a meta-analysis to uncover the contribution of the fungal mycobiota to CRC. METHODS: We retrieved fecal metagenomic data sets from 7 previous publications and established an additional in-house cohort, totaling 1329 metagenomes (454 with CRC, 350 with adenoma, and 525 healthy individuals). Mycobiota composition and microbial interactions were analyzed. Candidate CRC-enriched fungal species (Aspergillus rambellii) was functionally validated in vitro and in vivo. RESULTS: Multicohort analysis revealed that the enteric mycobiota was altered in CRC. We identified fungi that were associated with patients with CRC or adenoma from multiple cohorts. Signature CRC-associated fungi included 6 enriched (A rambellii, Cordyceps sp. RAO-2017, Erysiphe pulchra, Moniliophthora perniciosa, Sphaerulina musiva, and Phytophthora capsici) and 1 depleted species (A kawachii). Co-occurrent interactions among CRC-enriched fungi became stronger in CRC compared with adenoma and healthy individuals. Moreover, we reported the transkingdom interactions between enteric fungi and bacteria in CRC progression, of which A rambellii was closely associated with CRC-enriched bacteria Fusobacterium nucleatum. A rambellii promoted CRC cell growth in vitro and tumor growth in xenograft mice. We further identified that combined fungal and bacterial biomarkers were more accurate than panels with pure bacterial species to discriminate patients with CRC from healthy individuals (the area under the curve relative change increased by 1.44%-10.60%). CONCLUSIONS: This study reveals enteric mycobiota signatures and pathogenic fungi in stages of colorectal tumorigenesis. Fecal fungi can be used, in addition to bacteria, for noninvasive diagnosis of patients with CRC.


Assuntos
Adenoma , Neoplasias Colorretais , Adenoma/microbiologia , Animais , Aspergillus , Bactérias/genética , Biomarcadores , Transformação Celular Neoplásica , Neoplasias Colorretais/diagnóstico , Fezes/microbiologia , Humanos , Metagenoma , Camundongos
14.
Respir Res ; 24(1): 144, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259076

RESUMO

BACKGROUND: The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. METHODS: Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. RESULTS: Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. CONCLUSIONS: Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms.


Assuntos
Asma , Microbioma Gastrointestinal , Micobioma , Humanos , Camundongos , Animais , Imunidade Inata , Disbiose , Linfócitos , Pulmão , Pyroglyphidae , Modelos Animais de Doenças
15.
Artigo em Inglês | MEDLINE | ID: mdl-37676702

RESUMO

During a survey of species diversity of Penicillium and Talaromyces in sugarcane (Saccharum officinarum) rhizosphere in the Khuzestan province of Iran [1], 195 strains were examined, from which 187 belonged to Penicillium (11 species) and eight to Talaromyces (one species). In the present study, three strains of Penicillium belonging to section Exilicaulis series Restricta, identified as P. restrictum by Ansari et al. [1], were subjected to a phylogenetic study. The multilocus phylogeny of partial ß-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as Penicillium rhizophilum sp. nov. This species is phylogenetically distinct in series Restricta, but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of Penicillium rhizophilum sp. nov. is IRAN 18169F and the ex-type culture is LA30T (=IRAN 4042CT=CBS 149737T).


Assuntos
Penicillium , Saccharum , Rizosfera , Irã (Geográfico) , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Grão Comestível , Penicillium/genética
16.
Eur J Neurol ; 30(11): 3462-3470, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36694359

RESUMO

BACKGROUND AND PURPOSE: Intestinal inflammation and gut microbiota dysbiosis contribute to Parkinson disease (PD) pathogenesis, and growing evidence suggests associations between inflammatory bowel diseases (IBD) and PD. Considered as markers of chronic gastrointestinal inflammation, elevated serum anti-Saccharomyces cerevisiae antibody (ASCA) levels, against certain gut fungal components, are related to IBD, but their effect on PD is yet to be investigated. METHODS: Serum ASCA IgG and IgA levels were measured using an enzyme-linked immunosorbent assay, and the gut mycobiota communities were investigated using ITS2 sequencing and analyzed using the Qiime pipeline. RESULTS: The study included 393 subjects (148 healthy controls [HCs], 140 with PD, and 105 with essential tremor [ET]). Both serum ASCA IgG and IgA levels were significantly higher in the PD group than in the ET and HC groups. Combining serum ASCA levels and the occurrence of constipation could discriminate patients with PD from controls (area under the curve [AUC] = 0.81, 95% confidence interval [CI] = 0.76-0.86) and from patients with ET (AUC = 0.85, 95% CI = 0.79-0.89). Furthermore, the composition of the gut fungal community differed between the PD and HC groups. The relative abundances of Saccharomyces cerevisiae, Aspergillus, Candida solani, Aspergillus flavus, ASV601_Fungi, ASV866_Fungi, and ASV755_Fungi were significantly higher in the PD group, and enriched Malassezia restricta was found in the HC group. CONCLUSIONS: Our study identified elevated serum ASCA levels and enriched gut Saccharomyces cerevisiae in de novo PD.

17.
Med Mycol ; 61(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36948603

RESUMO

Mycobiota are essential to the health of any living being, creating a balanced and complex interaction between bacteria, the immune system, and the tissue cells of the host. Talaromyces marneffei (also known as Penicillium marneffei) is a dimorphic fungus, endemic in South Asia, which often causes a life-threatening systemic fungal infection (called penicilliosis), particularly in immunocompromised hosts. Nasal swabs from 73 healthy volunteers were analysed to characterize their mycobiota, through its cultural characteristics, morphology, and molecular methods (PCR). All volunteers were also asked to answer to an anonymous questionnaire. Three women were positive (and asymptomatic) for T. marneffei. One of them was reported to have lupus. This study contributes to improving our knowledge about human normal mycobiota, identifying mycotic agents that may cause complicated systemic infections (as T. marneffei), especially in immunosuppressed patients, as well as other possible risk factors of exposure or prognosis.


• Talaromyces marneffei is a zoonotic fungus that may be responsible for life-threatening systemic infections in immune-comprised patients. • Talaromyces marneffei was identified in nasal swabs from asymptomatic volunteers. • This suggests that this fungus may be part of the nasal normal mycobiota of some humans.


Assuntos
Micoses , Talaromyces , Humanos , Feminino , Animais , Portugal , Micoses/diagnóstico , Micoses/microbiologia , Micoses/veterinária , Hospedeiro Imunocomprometido
18.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37463798

RESUMO

Intestinal fungi play an important role in the health-disease process. We observed that in liver diseases, fungal infections lead to high mortality. In this review, we were able to gather and evaluate the available scientific evidence on intestinal mycobiota and liver diseases. We searched PubMed and Embase, using a combination of several entry terms. Only studies in adults ≥ 18 years old with liver disease and published after 2010 were included. We observed that individuals with liver disease have an altered intestinal mycobioma, which accompanies the progression of these diseases. In cirrhotic patients, there are a high number of Candida sp. strains, especially Candida albicans. In early chronic liver disease, there is an increase in alpha diversity at the expense of Candida sp. and conversely, in advanced liver disease, there is a negative correlation between alpha diversity and model for end-stage liver disease score. On the other hand, patients with non-alcoholic fatty liver disease demonstrate greater diversity compared to controls. Our study concluded that the evidence on the subject is sparse, with few studies and a lack of standardization of outcome measures and reporting, and it was not possible to perform a meta-analysis capable of synthesizing relevant parameters of the human mycobiotic profile. However, certain fungal genera such as Candida play an important role in the context of liver disease and that adults with liver disease have a distinct gut mycobiotic profile from healthy controls.


In people with end-stage liver disease, there is a high mortality from fungal infections. In this context, the genus Candida plays an important role in the context of liver disease, and adults with liver disease have a distinct gut mycobiota profile from healthy controls.


Assuntos
Doença Hepática Terminal , Microbioma Gastrointestinal , Hepatopatias , Micobioma , Humanos , Animais , Fungos , Doença Hepática Terminal/veterinária , Índice de Gravidade de Doença , Candida albicans , Hepatopatias/veterinária
19.
Microb Ecol ; 86(3): 2021-2031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37000232

RESUMO

Fungi can colonize organic matter present in subterranean sites and have a significant role as dwellers in different microniches of cave habitats. In order to analyze the content of airborne fungal propagules in different parts of "Stopica Cave," a touristic site in Serbia, air sampling was carried out in three seasons during 2020, prior to and during the onset of COVID-19 pandemic. Culturable mycobiota was identified using both microscopic techniques and ITS region/BenA gene barcoding, while multivariate analyses were employed to establish the link between fungal taxa and different environmental factors. The maximal measured fungal propagule concentrations were recorded during spring sampling which were based on fungal propagule concentration categories; the cave environment matches the category V. A total of 29 fungal isolates were identified, while Aspergillus, Cladosporium, Fusarium, Lecanicillium, Mucor, and Penicillium were the most diverse genera. According to the trophic mode, most of the isolated fungal species were pathotrophs (75.86%), but when regarding ecological guilds, the most dominant were undefined saprobes and animal pathogens (41.38% for each). Show caves are especially vulnerable to human impacts, and the fungal propagules' concentration within the caves could be good indices for the level of ecological disturbance.


Assuntos
COVID-19 , Fungos , Animais , Humanos , Cavernas/microbiologia , Sérvia , Pandemias , Estações do Ano , Microbiologia do Ar , Monitoramento Ambiental/métodos
20.
Microb Ecol ; 86(2): 859-871, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36322177

RESUMO

In the last several decades, amphibian populations have been declining worldwide. Many factors have been linked to global amphibian decline, including habitat destruction, pollution, introduced species, global environmental changes, and emerging infectious diseases. Recent studies of amphibian skin infections were mainly focused on the presence of chytridiomycosis, neglecting other members of the frogs' skin communities. The diversity pattern of fungal dwellers on the skin of green frogs (Pelophylax esculentus complex) was investigated. A total of 100 adults were sampled from three localities in South Banat (northern Serbia) over three consecutive years and detected fungal dwellers were identified using light microscopy and ITS and BenA gene sequencing. Structures belonging to fungi and fungus-like organisms including a variety of spores and different mycelia types were documented in the biofilm formed on amphibian skin, and are classified into 10 groups. In total, 42 fungal isolates were identified to species, section, or genus level. The difference in mycobiota composition between sampling points (localities and green frog taxa) was documented. The highest number of fungal structures and isolates was recorded on the hybrid taxon P. esculentus and locality Stevanove ravnice. Parental species showed a markedly lower diversity than the hybrid taxon and were more similar in diversity patterns and were placed in the same homogenous group. The locality Stevanove ravnice exhibited more pronounced differences in diversity pattern than the other two localities and was placed in a distinct and separate homogenous group. Among the fungal isolates, the highest isolation frequency was documented for Alternaria alternata, Aspergillus sp. sect. Nigri, Epicoccum nigrum, Fusarium proliferatum, and Trichoderma atroviride. Among the documented species, dematiaceous fungi, causative agents of chromomycosis in amphibians, were also recorded in this research with high isolation frequency. Also, some rare fungal species such as Quambalaria cyanescens and Pseudoteniolina globosa are documented for the first time in this research as microbial inhabitants of amphibian skin.


Assuntos
Rana clamitans , Animais , Rana esculenta , Ranidae/microbiologia , Anuros , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA