Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(2): 243-255.e15, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827682

RESUMO

Mammals cannot see light over 700 nm in wavelength. This limitation is due to the physical thermodynamic properties of the photon-detecting opsins. However, the detection of naturally invisible near-infrared (NIR) light is a desirable ability. To break this limitation, we developed ocular injectable photoreceptor-binding upconversion nanoparticles (pbUCNPs). These nanoparticles anchored on retinal photoreceptors as miniature NIR light transducers to create NIR light image vision with negligible side effects. Based on single-photoreceptor recordings, electroretinograms, cortical recordings, and visual behavioral tests, we demonstrated that mice with these nanoantennae could not only perceive NIR light, but also see NIR light patterns. Excitingly, the injected mice were also able to differentiate sophisticated NIR shape patterns. Moreover, the NIR light pattern vision was ambient-daylight compatible and existed in parallel with native daylight vision. This new method will provide unmatched opportunities for a wide variety of emerging bio-integrated nanodevice designs and applications. VIDEO ABSTRACT.


Assuntos
Nanopartículas/uso terapêutico , Células Fotorreceptoras de Vertebrados/fisiologia , Visão Ocular/fisiologia , Animais , Feminino , Raios Infravermelhos , Injeções/métodos , Luz , Masculino , Mamíferos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Opsinas/metabolismo , Retina/metabolismo , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular/genética
2.
Nano Lett ; 24(8): 2437-2443, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354357

RESUMO

Nanoantennas capable of large fluorescence enhancement with minimal absorption are crucial for future optical technologies from single-photon sources to biosensing. Efficient dielectric nanoantennas have been designed, however, evaluating their performance at the individual emitter level is challenging due to the complexity of combining high-resolution nanofabrication, spectroscopy and nanoscale positioning of the emitter. Here, we study the fluorescence enhancement in infinity-shaped gallium phosphide (GaP) nanoantennas based on a topologically optimized design. Using fluorescence correlation spectroscopy (FCS), we probe the nanoantennas enhancement factor and observe an average of 63-fold fluorescence brightness enhancement with a maximum of 93-fold for dye molecules in nanogaps between 20 and 50 nm. The experimentally determined fluorescence enhancement of the nanoantennas is confirmed by numerical simulations of the local density of optical states (LDOS). Furthermore, we show that beyond design optimization of dielectric nanoantennas, increased performances can be achieved via tailoring of nanoantenna fabrication.

3.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408023

RESUMO

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

4.
Nano Lett ; 24(3): 983-992, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206182

RESUMO

On-chip polarization detectors have attracted extensive research interest due to their filterless and ultracompact architecture. However, their polarization-dependent photoresponses cannot be dynamically adjusted, hindering the development toward intelligence. Here, we propose dynamically reconfigurable polarimetry based on in-sensor differentiation of two self-powered photoresponses with orthogonal polarization dependences and tunable responsivities. Such a device can be electrostatically configured in an ultrahigh polarization extinction ratio (PER) mode, where the PER tends to infinity, a Stokes parameter direct sensing mode, where the photoresponse is proportional to S1 or S2 with high accuracy (RMSES1 = 1.5%, RMSES2 = 2.0%), or a background suppressing mode, where the target-background polarization contrast is singularly enhanced. Moreover, the device achieves a polarization angle sensitivity of 0.51 mA·W-1·degree-1 and a specific polarization angle detectivity of 2.8 × 105 cm·Hz1/2·W·degree-1. This scheme is demonstrated throughout the near-to-long-wavelength infrared range, and it will bring a leap for next-generation on-chip polarimeters.

5.
Adv Funct Mater ; 34(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39131199

RESUMO

Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.

6.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522099

RESUMO

Integrated quantum photonic circuits require the efficient coupling of photon sources to photonic waveguides. Hybrid plasmonic/photonic platforms are a promising approach, taking advantage of both plasmon modal confinement for efficient coupling to a nearby emitter and photonic circuitry for optical data transfer and processing. In this work, we established directional quantum dot (QD) emission coupling to a planar TiO2waveguide assisted by a Yagi-Uda antenna. Antenna on waveguide is first designed by scaling radio frequency dimensions to nano-optics, taking into account the hybrid plasmonic/photonic platform. Design is then optimized by full numerical simulations. We fabricate the antenna on a TiO2planar waveguide and deposit a few QDs close to the Yagi-Uda antenna. The optical characterization shows clear directional coupling originating from antenna effect. We estimate the coupling efficiency and directivity of the light emitted into the waveguide.

7.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38176065

RESUMO

Optical nanoantennas possess broad applications in the fields of photodetection, environmental science, biosensing and nonlinear optics, owing to their remarkable ability to enhance and confine the optical field at the nanoscale. In this article, we present a theoretical investigation of surface-enhanced photoluminescence spectroscopy for single molecules confined within novel Au bowtie nanoantenna, covering a wavelength range from the visible to near-infrared spectral regions. We employ the finite element method to quantitatively study the optical enhancement properties of the plasmonic field, quantum yield, Raman scattering and fluorescence. Additionally, we systematically examine the contribution of nonlocal dielectric response in the gap mode to the quantum yield, aiming to gain a better understanding of the fluorescence enhancement mechanism. Our results demonstrate that altering the configuration of the nanoantenna has a significant impact on plasmonic sensitivity. The nonlocal dielectric response plays a crucial role in reducing the quantum yield and corresponding fluorescence intensity when the gap distance is less than 3 nm. However, a substantial excitation field can effectively overcome fluorescence quenching and enhance the fluorescence intensity. By optimizing nanoantenna configuration, the maximum enhancement of surface-enhanced Raman can be turned to 9 and 10 magnitude orders in the visible and near-infrared regions, and 3 and 4 magnitude orders for fluorescence enhancement, respectively. The maximum spatial resolutions of 0.8 nm and 1.5 nm for Raman and fluorescence are also achieved, respectively. Our calculated results not only provide theoretical guidance for the design and application of new nanoantennas, but also contribute to expanding the range of surface-enhanced Raman and fluorescence technology from the visible to the near-infrared region.

8.
Nano Lett ; 23(24): 11802-11808, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085099

RESUMO

We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.

9.
Nano Lett ; 23(16): 7584-7592, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37539848

RESUMO

Optical bound states in the continuum (BICs) offer strong interactions with quantum emitters and have been extensively studied for manipulating spontaneous emission, lasing, and polariton Bose-Einstein condensation. However, the out-coupling efficiency of quasi-BIC emission, crucial for practical light-emitting devices, has received less attention. Here, we report an adaptable approach for enhancing quasi-BIC emission from a resonant monocrystalline silicon (c-Si) metasurface through lattice and multipolar engineering. We identify dual-BICs originating from electric quadrupoles (EQ) and out-of-plane magnetic dipoles, with EQ quasi-BICs exhibiting concentrated near-fields near the c-Si nanodisks. The enhanced fractional radiative local density of states of EQ quasi-BICs overlaps spatially with the emitters, promoting efficient out-coupling. Furthermore, coupling the EQ quasi-BICs with Rayleigh anomalies enhances directional emission intensity, and we observe inherent opposite topological charges in the multipolarly controlled dual-BICs. These findings provide valuable insights for developing efficient nanophotonic devices based on quasi-BICs.

10.
Nano Lett ; 23(12): 5528-5534, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278447

RESUMO

We report the first observation of the coupling of strong optical near fields to wavepackets of free, 100 eV electrons with <50 fs temporal resolution in an ultrafast point-projection microscope. Optical near fields are created by excitation of a thin, nanometer-sized Yagi-Uda antenna, with 20 fs near-infrared laser pulses. Phase matching between electrons and near fields is achieved due to strong spatial confinement of the antenna near field. Energy-resolved projection images of the antenna are recorded in an optical pump-electron probe scheme. We show that the phase modulation of the electron by transverse-field components results in a transient electron deflection while longitudinal near-field components broaden the kinetic energy distribution. This low-energy electron near-field coupling is used here to characterize the chirp of the ultrafast electron wavepackets, acquired upon propagation from the electron emitter to the sample. Our results bring direct mapping of different vectorial components of highly localized optical near fields into reach.

11.
Small ; 19(14): e2207318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693778

RESUMO

Inorganic nanoparticles with multiple functions have been attracting attention as multimodal nanoprobes in bioimaging, biomolecule detection, and medical diagnosis and treatment. A drawback of conventional metallic nanoparticle-based nanoprobes is the Ohmic losses that lead to fluorescence quenching of attached molecules and local heating under light irradiation. Here, metal-free nanoprobes capable of scattering/fluorescence dual-mode imaging are developed. The nanoprobes are composed of a silicon nanosphere core having efficient Mie scattering in the visible to near infrared range and a fluorophore doped silica shell. The dark-field scattering and photoluminescence images/spectra for nanoprobes made from different size silicon nanospheres and different kinds of fluorophores are studied by single particle spectroscopy. The fluorescence spectra are strongly modified by the Mie modes of a silicon nanosphere core. By comparing scattering and fluorescence spectra and calculated Purcell factors, the fluorescence enhancement factor is quantitatively discussed. In vitro scattering/fluorescence imaging studies on human cancer cells demonstrate that the developed nanoparticles work as scattering/fluorescence dual-mode imaging nanoprobes.

12.
Nanotechnology ; 34(36)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37311448

RESUMO

The local surface plasmon resonance (LSPR) effect has been widely used in various nanophotonic applications. However, because the LSPR effect is highly sensitive to the structure and geometry, it is desirable to efficiently search viable geometries for predefined local field enhancement spectrum. Herein we present a generative adversarial network-based LSPR nanoantenna design scheme. By encoding the antenna structure information into an red-green-blue (RGB) color image, the corresponding nanoantenna structure can be inverse-designed to achieve the required enhancement spectrum of the local field. The proposed scheme can accurately offer the multiple geometry layout for the customized specific spectrum in seconds, which could be beneficial for fast design and fabrication of plasmonic nanoantenna.

13.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772328

RESUMO

Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications.

14.
Nano Lett ; 22(17): 6982-6987, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998329

RESUMO

Visible and infrared photons can be detected with a broadband response via the internal photoeffect. By use of plasmonic nanostructures, i.e., nanoantennas, wavelength selectivity can be introduced to such detectors through geometry-dependent resonances. Also, additional functionality, like electronic responsivity switching and polarization detection, has been realized. However, previous devices consisted of large arrays of nanostructures to achieve detectable photocurrents. Here we show that this concept can be scaled down to a single antenna level, resulting in detector dimensions well below the resonance wavelength of the device. Our design consists of a single electrically connected plasmonic nanoantenna covered with a wide-bandgap semiconductor allowing broadband photodetection in the visible/near-infrared via injection of hot carriers. We demonstrate electrical switching of the color sensitivity as well as polarization detection. Our results hold promise for the realization of ultrasmall photodetectors with advanced functionality.

15.
Nano Lett ; 22(3): 1032-1038, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35001635

RESUMO

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source. The device consists of laterally arranged electrically contacted gold nanoantennas with their gap filled by the organic semiconductor zinc phthalocyanine (ZnPc). Since ZnPc shows preferred hole conduction in combination with gold, the recombination zone relocates depending on the polarity of the applied voltage and couples selectively to either of the two antennas. Thereby, the emission characteristics of the device also depend on polarity. Contrary to large-area OLEDs where recombination at metal contacts significantly contributes to losses, our ultracompact OLEA structures facilitate efficient radiation into the far-field rendering transparent electrodes obsolete. We envision OLEA structures to serve as wavelength-scale pixels with tunable color and directionality for advanced display applications.

16.
Nano Lett ; 22(2): 561-569, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34978824

RESUMO

Nanoplasmonic systems combined with optically active two-dimensional materials provide intriguing opportunities to explore and control light-matter interactions at extreme subwavelength length scales approaching the exciton Bohr radius. Here, we present room- and cryogenic-temperature investigations of a MoSe2 monolayer on individual gold dipole nanoantennas. By controlling nanoantenna size, the dipolar resonance is tuned relative to the exciton achieving a total tuning of ∼130 meV. Differential reflectance measurements performed on >100 structures reveal an apparent avoided crossing between exciton and dipolar mode and an exciton-plasmon coupling constant of g = 55 meV, representing g/(ℏωX) ≥ 3% of the transition energy. This places our hybrid system in the intermediate-coupling regime where spectra exhibit a characteristic Fano-like shape. We demonstrate active control by varying the polarization of the excitation light to programmably suppress coupling to the dipole mode. We further study the emerging optical signatures of the monolayer localized at dipole nanoantennas at 10 K.


Assuntos
Ouro , Ressonância de Plasmônio de Superfície , Ouro/química , Ressonância de Plasmônio de Superfície/métodos
17.
Nano Lett ; 22(16): 6685-6691, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960899

RESUMO

Surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) takes advantage of surface plasmon resonances supported on metallic nanostructures to amplify the coherent Raman response of target molecules. While these metallic antennas have found significant success in SE-CARS studies, photoinduced morphological changes to the nanoantenna under ultrafast excitation introduce significant hurdles in terms of stability and reproducilibty. These hurdles need to be overcome in order to establish SE-CARS as a reliable tool for rapid biomolecular sensing. Here, we address this challenge by performing molecular CARS measurements enhanced by nanoantennas made from high-index dielectric particles with more favorable thermal properties. We present the first experimental demonstration of enhanced molecular CARS signals observed at Si nanoantennas, which offer much improved thermal stability compared to their metallic counterparts.


Assuntos
Nanoestruturas , Análise Espectral Raman , Silício , Ressonância de Plasmônio de Superfície
18.
Nano Lett ; 22(12): 5015-5021, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35658471

RESUMO

The orbital angular momentum (OAM) of light offers a new degree of freedom for light-matter interactions, yet how to control such interactions with this physical dimension remains open. Here, by developing a numerical method enabling optical OAM simulations, we provide insights into complex plasmon behaviors with the physical dimension of OAM, and we prove in theory that plasmonic nanostructures can function as efficient antennas to intercept and directionally reradiate the power of OAM beams. The interplay between optical OAM and spin angular momentum (SAM) generates novel particle polarizations and radiations, which were inaccessible before. For arrayed nanoparticles, coherent surface plasmons with specific phase retardations determined by OAM of the beams enable directional power radiations, making a phased array antenna. These findings expand our knowledge of nanoplasmonics in the OAM area and are promising for quantum information processing and dynamic sensing of ultraweak biosignals.

19.
Nano Lett ; 22(9): 3525-3531, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472261

RESUMO

Actively tunable optical materials integrated with engineered subwavelength structures could enable novel optoelectronic devices, including reconfigurable light sources and tunable on-chip spectral filters. The phase-change material vanadium dioxide (VO2) provides a promising solid-state solution for dynamic tuning; however, previous demonstrations have been limited to thicker and often rough VO2 films or require a lattice-matched substrate for growth. Here, sub-10-nm-thick VO2 films are realized by atomic layer deposition (ALD) and integrated with plasmonic nanogap cavities to demonstrate tunable, spectrally selective absorption across 1200 nm in the near-infrared (NIR). Upon inducing the phase transition via heating, the absorption resonance is blue-shifted by as much as 60 nm. This process is reversible upon cooling and repeatable over more than ten temperature cycles. Dynamic, ultrathin VO2 films deposited by ALD, as demonstrated here, open up new potential architectures and applications where VO2 can be utilized to provide reconfigurability including three-dimensional, flexible and large-area structures.

20.
Nano Lett ; 22(20): 8060-8067, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214538

RESUMO

Dielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators. Through analytical theory, three-dimensional electromagnetic modeling, and infrared spectroscopy, we systematically investigate the spectral responses and field distributions of the slotted metasurface in the mid-IR. Our results show that by introducing slots, the electric field intensity enhancement near the apex and the quality factor of the quasi-BIC resonance are increased by a factor of 2.1 and 3.3, respectively, in comparison to the metasurface without slots. Furthermore, the slotted metasurface also provides extra regions of electromagnetic enhancement and confinement, which holds enormous potential in particle trapping, sensing, and emission enhancement.


Assuntos
Campos Eletromagnéticos , Silício , Vibração , Espectrofotometria Infravermelho , Eletricidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA