Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.021
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(4): 914-921.e10, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32330414

RESUMO

SARS-CoV-2 is a betacoronavirus responsible for the COVID-19 pandemic. Although the SARS-CoV-2 genome was reported recently, its transcriptomic architecture is unknown. Utilizing two complementary sequencing techniques, we present a high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome. DNA nanoball sequencing shows that the transcriptome is highly complex owing to numerous discontinuous transcription events. In addition to the canonical genomic and 9 subgenomic RNAs, SARS-CoV-2 produces transcripts encoding unknown ORFs with fusion, deletion, and/or frameshift. Using nanopore direct RNA sequencing, we further find at least 41 RNA modification sites on viral transcripts, with the most frequent motif, AAGAA. Modified RNAs have shorter poly(A) tails than unmodified RNAs, suggesting a link between the modification and the 3' tail. Functional investigation of the unknown transcripts and RNA modifications discovered in this study will open new directions to our understanding of the life cycle and pathogenicity of SARS-CoV-2.


Assuntos
Betacoronavirus/genética , RNA Viral/genética , Transcriptoma , Animais , Chlorocebus aethiops , Epigênese Genética , Processamento Pós-Transcricional do RNA , SARS-CoV-2 , Análise de Sequência de RNA , Células Vero
2.
Mol Cell ; 84(12): 2320-2336.e6, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906115

RESUMO

2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.


Assuntos
Regiões 3' não Traduzidas , Estabilidade de RNA , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação , Processamento Pós-Transcricional do RNA , Sequenciamento por Nanoporos/métodos , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina
3.
Mol Cell ; 82(7): 1372-1382.e4, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240057

RESUMO

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.


Assuntos
DNA Helicases , Replicação do DNA , Cromatina/genética , Cromossomos/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo
4.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33713597

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Assuntos
COVID-19 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
5.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168039

RESUMO

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Assuntos
Coronavirus Humano OC43/fisiologia , Processamento Pós-Transcricional do RNA/genética , SARS-CoV-2/fisiologia , Replicação Viral/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Proteínas do Nucleocapsídeo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/efeitos dos fármacos
6.
EMBO J ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394354

RESUMO

Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.

7.
Mol Cell ; 80(5): 915-928.e5, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186547

RESUMO

Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , DNA de Neoplasias , Epigênese Genética , Epigenoma , Regulação Neoplásica da Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos , Sequenciamento por Nanoporos , Neoplasias , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Especificidade de Órgãos
8.
Mol Cell ; 77(5): 985-998.e8, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31839405

RESUMO

Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Íntrons , Células K562 , Cinética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Transcrição Gênica
9.
Genome Res ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358016

RESUMO

DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads. And these errors are found only in one strand but not the other, showing a strand-specific bias. Leveraging this discovery, we developed Hammerhead, a pioneering pipeline designed for de novo methylation discovery that circumvents the necessity of raw signal inference and a methylation-free control. The majority (14 out of 16) of the identified motifs can be validated by raw signal comparison methods or by identifying corresponding methyltransferases in bacteria. Additionally, we included a novel polishing strategy employing duplex reads to correct modification-induced errors in bacterial genome assemblies, achieving a reduction of over 85% in such errors. In summary, Hammerhead enables users to effectively locate bacterial DNA methylation sites from nanopore FASTQ/FASTA reads, thus holds promise as a routine pipeline for a wide range of nanopore sequencing applications, such as genome assembly, metagenomic binning, decontaminating eukaryotic genome assembly, and functional analysis for DNA modifications.

10.
Genome Res ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406499

RESUMO

Tandem repeats (TR) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs, however, the underlying bioinformatics perspectives remain challenging. We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR characterization, visualization and analysis across multiple genomes. In a comparison with existing tools based on long-read sequencing data from both Oxford Nanopore Technology (ONT, Simplex and Duplex) and PacBio (Sequel 2 and Revio), otter and TREAT achieved state-of-the-art genotyping and motif characterisation accuracy. Applied to clinically relevant TRs, TREAT/otter significantly identified individuals with pathogenic TR expansions. When applied to a case-control setting, we significantly replicated previously reported associations of TRs with Alzheimer's Disease, including those near or within APOC1 (p=2.63x10-9), SPI1 (p=6.5x10-3) and ABCA7 (p=0.04) genes. We used TREAT/otter to systematically evaluate potential biases when genotyping TRs using diverse ONT and PacBio long-read sequencing datasets. We showed that, in rare cases (0.06%), long-read sequencing suffers from coverage drops in TRs, including the disease-associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR misgenotyping, hampering the accurate characterization of TR alleles. Taken together, our tools can accurately genotype TR across different sequencing technologies and with minimal requirements, allowing end-to-end analysis and comparisons of TR in human genomes, with broad applications in research and clinical fields.

11.
Proc Natl Acad Sci U S A ; 121(38): e2405018121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39264741

RESUMO

The transport of biopolymers across nanopores is an important biological process currently under investigation for the rapid analysis of DNA and proteins. While the transport of DNA is generally understood, methods to induce unfolded protein translocation have only recently been discovered (Yu et al., 2023, Sauciuc et al., 2023). Here, we found that during electroosmotically driven translocation of polypeptides, blob-like structures typically form inside nanopores, often obstructing their transport and preventing addressing individual amino acids. This is in contrast with the electrophoretic transport of DNA, where the formation of such structures has not been reported. Comparisons between different nanopore sizes and shapes and modifications by different surface chemistries allowed formulating a mechanism for blob formation. We also show that single-file transport can be achieved by using 1) nanopores that have an entry and an internal diameter smaller than the persistence length of the polymer, 2) nanopores with a nonsticky (i.e., nonaromatic) inner surface, and 3) moderate translocation velocities. These experiments provide a basis for understanding polypeptide transport under confinement and for improving the design and engineering of nanopores for protein analysis.


Assuntos
Nanoporos , Transporte Proteico , Proteínas/química , Proteínas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , DNA/química , DNA/metabolismo , Eletro-Osmose
12.
Proc Natl Acad Sci U S A ; 121(29): e2321017121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990947

RESUMO

RNA polymerases (RNAPs) carry out the first step in the central dogma of molecular biology by transcribing DNA into RNA. Despite their importance, much about how RNAPs work remains unclear, in part because the small (3.4 Angstrom) and fast (~40 ms/nt) steps during transcription were difficult to resolve. Here, we used high-resolution nanopore tweezers to observe the motion of single Escherichia coli RNAP molecules as it transcribes DNA ~1,000 times improved temporal resolution, resolving single-nucleotide and fractional-nucleotide steps of individual RNAPs at saturating nucleoside triphosphate concentrations. We analyzed RNAP during processive transcription elongation and sequence-dependent pausing at the yrbL elemental pause sequence. Each time RNAP encounters the yrbL elemental pause sequence, it rapidly interconverts between five translocational states, residing predominantly in a half-translocated state. The kinetics and force-dependence of this half-translocated state indicate it is a functional intermediate between pre- and post-translocated states. Using structural and kinetics data, we show that, in the half-translocated and post-translocated states, sequence-specific protein-DNA interaction occurs between RNAP and a guanine base at the downstream end of the transcription bubble (core recognition element). Kinetic data show that this interaction stabilizes the half-translocated and post-translocated states relative to the pre-translocated state. We develop a kinetic model for RNAP at the yrbL pause and discuss this in the context of key structural features.


Assuntos
RNA Polimerases Dirigidas por DNA , Escherichia coli , Nanoporos , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Transcrição Gênica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Pinças Ópticas , Cinética , Nucleotídeos/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598338

RESUMO

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Assuntos
Nanoporos , Infecção por Zika virus , Zika virus , Animais , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Primatas/genética , Zika virus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
14.
Trends Genet ; 39(9): 649-671, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230864

RESUMO

Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional , Perfilação da Expressão Gênica/métodos
15.
Am J Hum Genet ; 110(8): 1229-1248, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541186

RESUMO

Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.


Assuntos
Exoma , Testes Genéticos , Humanos , Exoma/genética , Análise de Sequência de DNA , Fenótipo , Sequenciamento do Exoma , Doenças Raras
16.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37146589

RESUMO

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Ornitina Carbamoiltransferase , Humanos , Substituição de Aminoácidos , Hiperamonemia/etiologia , Hiperamonemia/genética , Mutação de Sentido Incorreto/genética , Ornitina Carbamoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia
17.
RNA ; 30(8): 955-966, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38777382

RESUMO

The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.


Assuntos
Regiões Promotoras Genéticas , RNA Longo não Codificante , Telômero , Sítio de Iniciação de Transcrição , Transcriptoma , Humanos , Telômero/genética , Telômero/metabolismo , RNA Longo não Codificante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos
18.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39331016

RESUMO

Nanopore sequence technology has demonstrated a longer read length and enabled to potentially address the limitations of short-read sequencing including long-range haplotype phasing and accurate variant calling. However, there is still room for improvement in terms of the performance of single nucleotide variant (SNV) identification and computing resource usage for the state-of-the-art approaches. In this work, we introduce miniSNV, a lightweight SNV calling algorithm that simultaneously achieves high performance and yield. miniSNV utilizes known common variants in populations as variation backgrounds and leverages read pileup, read-based phasing, and consensus generation to identify and genotype SNVs for Oxford Nanopore Technologies (ONT) long reads. Benchmarks on real and simulated ONT data under various error profiles demonstrate that miniSNV has superior sensitivity and comparable accuracy on SNV detection and runs faster with outstanding scalability and lower memory than most state-of-the-art variant callers. miniSNV is available from https://github.com/CuiMiao-HIT/miniSNV.


Assuntos
Algoritmos , Sequenciamento por Nanoporos , Polimorfismo de Nucleotídeo Único , Sequenciamento por Nanoporos/métodos , Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
19.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39226890

RESUMO

Nanopore selective sequencing allows the targeted sequencing of DNA of interest using computational approaches rather than experimental methods such as targeted multiplex polymerase chain reaction or hybridization capture. Compared to sequence-alignment strategies, deep learning (DL) models for classifying target and nontarget DNA provide large speed advantages. However, the relatively low accuracy of these DL-based tools hinders their application in nanopore selective sequencing. Here, we present a DL-based tool named ReadCurrent for nanopore selective sequencing, which takes electric currents as inputs. ReadCurrent employs a modified very deep convolutional neural network (VDCNN) architecture, enabling significantly lower computational costs for training and quicker inference compared to conventional VDCNN. We evaluated the performance of ReadCurrent across 10 nanopore sequencing datasets spanning human, yeasts, bacteria, and viruses. We observed that ReadCurrent achieved a mean accuracy of 98.57% for classification, outperforming four other DL-based selective sequencing methods. In experimental validation that selectively sequenced microbial DNA from human DNA, ReadCurrent achieved an enrichment ratio of 2.85, which was higher than the 2.7 ratio achieved by MinKNOW using the sequence-alignment strategy. In summary, ReadCurrent can rapidly classify target and nontarget DNA with high accuracy, providing an alternative in the toolbox for nanopore selective sequencing. ReadCurrent is available at https://github.com/Ming-Ni-Group/ReadCurrent.


Assuntos
Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Humanos , Análise de Sequência de DNA/métodos , Redes Neurais de Computação , Nanoporos , Software , Aprendizado Profundo , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
20.
Brief Bioinform ; 25(6)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322627

RESUMO

Short-tandem repeats (STRs) are the type of genetic markers extensively utilized in biomedical and forensic applications. Due to sequencing noise in nanopore sequencing, accurate analysis methods are lacking. We developed NASTRA, an innovative tool for Nanopore Autosomal Short Tandem Repeat Analysis, which overcomes traditional database-based methods' limitations and provides a precise germline analysis of STR genetic markers without the need for allele sequence reference. Demonstrating high accuracy in cell line authentication testing and paternity testing, NASTRA significantly surpasses existing methods in both speed and accuracy. This advancement makes it a promising solution for rapid cell line authentication and kinship testing, highlighting the potential of nanopore sequencing for in-field applications.


Assuntos
Algoritmos , Repetições de Microssatélites , Sequenciamento por Nanoporos , Sequenciamento por Nanoporos/métodos , Humanos , Marcadores Genéticos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alelos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA