Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456494

RESUMO

Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.


Assuntos
Diferenciação Celular , Proteínas Correpressoras , Fatores de Transcrição Forkhead , Células de Purkinje , Peixe-Zebra , Animais , Diferenciação Celular/genética , Cerebelo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Mamíferos , Neurônios/metabolismo , Células de Purkinje/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Exp Cell Res ; 435(1): 113902, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145818

RESUMO

In vitro differentiation of stem cells into various cell lineages is valuable in developmental studies and an important source of cells for modelling physiology and pathology, particularly for complex tissues such as the brain. Conventional protocols for in vitro neuronal differentiation often suffer from complicated procedures, high variability and low reproducibility. Over the last decade, the identification of cell fate-determining transcription factors has provided new tools for cellular studies in neuroscience and enabled rapid differentiation driven by ectopic transcription factor expression. As a proneural transcription factor, Neurogenin 2 (Ngn2) expression alone is sufficient to trigger rapid and robust neurogenesis from pluripotent cells. Here, we established a stable cell line, by piggyBac (PB) transposition, that conditionally expresses Ngn2 for generation of excitatory neurons from mouse embryonic stem cells (ESCs) using an all-in-one PB construct. Our results indicate that Ngn2-induced excitatory neurons have mature and functional characteristics consistent with previous studies using conventional differentiation methods. This approach provides an all-in-one PB construct for rapid and high copy number gene delivery of dox-inducible transcription factors to induce differentiation. This approach is a valuable in vitro cell model for disease modeling, drug screening and cell therapy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Neurônios/metabolismo , Linhagem Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Development ; 147(24)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33144399

RESUMO

Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1). To address whether Neurog1 also controls morphogenesis, we analysed the migratory behaviour of early olfactory neural progenitors in neurog1 mutant embryos. Our results indicate that the oriented movements of these progenitors are disrupted in this context. Morphogenesis is similarly affected by mutations in the chemokine receptor gene, cxcr4b, suggesting it is a potential Neurog1 target gene. We find that Neurog1 directly regulates cxcr4b through an E-box cluster located just upstream of the cxcr4b transcription start site. Our results suggest that proneural transcription factors, such as Neurog1, directly couple distinct aspects of nervous system development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Mucosa Olfatória/crescimento & desenvolvimento , Receptores CXCR4/genética , Proteínas de Peixe-Zebra/genética , Animais , Elementos E-Box/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Neurônios/metabolismo , Sítio de Iniciação de Transcrição , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
BMC Neurol ; 23(1): 20, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647078

RESUMO

INTRODUCTION: NEUROG1 gene is yet to be associated with a set of human phenotypes in the OMIM database. Three cases have previously been diagnosed with cranial dysinnervation due to biallelic variants in the NEUROG1 gene. This is the fourth and a novel report of a sibling pair harboring a homozygous variant in the NEUROG1 gene with autism as an additional phenotype. A brief review of the literature in conjunction with a genotype-phenotype correlation has been described. A potential hypothesis for the presence of the autistic phenotype in the present case has also been elucidated. CASE PRESENTATION: A female aged 6 years and 9 months born to endogamous and phenotypically healthy parents was diagnosed with global developmental delay, autism spectrum disorder, hearing loss, corneal opacity and no eye blinking. Her MRI of the brain revealed mild peritrigonal white matter hyperintensity, and MRI and CT scan of the temporal bones showed abnormal cranial nerves. The proband's younger sister, aged 4-years, was similarly affected. Whole exome sequencing was performed in the proband, which revealed a novel homozygous, likely pathogenic, truncating frameshift variant, c.228_231dup (p.Thr78ProfsTer122) in exon 1 of the NEUROG1 gene (ENST00000314744.4). Segregation analysis by Sanger sequencing showed the proband and her younger sister to be homozygotes and their parents to be heterozygous carriers. CONCLUSION: This is the fourth report across the globe with a variant identified in the NEUROG1 gene to be associated with cranial dysinnervation phenotype. An additional phenotype of autism in two female siblings was a novel observation. We provide a hypothetical framework which could explain the pleiotropic effect of a dysfunctional NEUROG1 protein leading to autism and posit it as a candidate for diagnosis of autism spectrum disorder with congenital cranial dysinnervation disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Feminino , Transtorno Autístico/genética , Irmãos , Homozigoto , Fenótipo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
5.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743149

RESUMO

Neurogenin 1 (Ngn1) belongs to the basic helix-loop-helix (bHLH) transcription factor family and plays important roles in specifying neuronal differentiation. The present study aimed to determine whether forced Ngn1 expression contributes to bone homeostasis. Ngn1 inhibited the p300/CREB-binding protein-associated factor (PCAF)-induced acetylation of nuclear factor of activated T cells 1 (NFATc1) and runt-related transcription factor 2 (Runx2) through binding to PCAF, which led to the inhibition of osteoclast and osteoblast differentiation, respectively. In addition, Ngn1 overexpression inhibited the TNF-α- and IL-17A-mediated enhancement of osteoclast differentiation and IL-17A-induced osteoblast differentiation. These findings indicate that Ngn1 can serve as a novel therapeutic agent for treating ankylosing spondylitis with abnormally increased bone formation and resorption.


Assuntos
Osteoclastos , Osteogênese , Diferenciação Celular , Interleucina-17/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética
6.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232358

RESUMO

In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell expansion is incomplete. The aim was to characterize the perinatal rat pancreas transcriptome and to identify regulatory pathways differentially regulated at the whole organ level in the offspring of mothers fed a regular control diet (CO) and of mothers fed a low-protein diet (LP). We performed mRNA expression profiling via the microarray analysis of total rat pancreas samples at embryonic day (E) 20 and postnatal days (P) 0 and 2. In the CO group, pancreas metabolic pathways related to sterol and lipid metabolism were highly enriched, whereas the LP diet induced changes in transcripts involved in RNA transcription and gene regulation, as well as cell migration and apoptosis. Moreover, a number of individual transcripts were markedly upregulated at P0 in the CO pancreas: growth arrest specific 6 (Gas6), legumain (Lgmn), Ets variant gene 5 (Etv5), alpha-fetoprotein (Afp), dual-specificity phosphatase 6 (Dusp6), and angiopoietin-like 4 (Angptl4). The LP diet induced the downregulation of a large number of transcripts, including neurogenin 3 (Neurog3), Etv5, Gas6, Dusp6, signaling transducer and activator of transcription 3 (Stat3), growth hormone receptor (Ghr), prolactin receptor (Prlr), and Gas6 receptor (AXL receptor tyrosine kinase; Axl), whereas upregulated transcripts were related to inflammatory responses and cell motility. We identified differentially regulated genes and transcriptional networks in the perinatal pancreas. These data revealed marked adaptations of exocrine and endocrine in the pancreas to the low-protein diet, and the data can contribute to identifying novel regulators of beta cell mass expansion and functional maturation and may provide a valuable tool in the generation of fully functional beta cells from stem cells to be used in replacement therapy.


Assuntos
Dieta com Restrição de Proteínas , Ilhotas Pancreáticas , Angiopoietinas/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Desenvolvimento Fetal , Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Gravidez , RNA Mensageiro/genética , Ratos , Receptores da Prolactina/genética , Receptores da Somatotropina/metabolismo , Esteróis/metabolismo , Fatores de Transcrição/metabolismo , alfa-Fetoproteínas/metabolismo
7.
Dev Biol ; 459(2): 72-78, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31881199

RESUMO

In the sea urchin larva, most neurons lie within an ectodermal region called the ciliary band. Our understanding of the mechanisms of specification and patterning of these peripheral ciliary band neurons is incomplete. Here, we first examine the gene regulatory landscape from which this population of neural progenitors arise in the neuroectoderm. We show that ciliary band neural progenitors first appear in a bilaterally symmetric pattern on the lateral edges of chordin expression in the neuroectoderm. Later in development, these progenitors appear in a salt-and-pepper pattern in the ciliary band where they express soxC, and prox, which are markers of neural specification, and begin to express synaptotagminB, a marker of differentiated neurons. We show that the ciliary band expresses the acid sensing ion channel gene asicl, which suggests that ciliary band neurons control the larva's ability to discern touch sensitivity. Using a chemical inhibitor of MAPK signaling, we show that this signaling pathway is required for proper specification and patterning of ciliary band neurons. Using live imaging, we show that these neural progenitors undergo small distance migrations in the embryo. We then show that the normal swimming behavior of the larvae is compromised if the neurogenesis pathway is perturbed. The developmental sequence of ciliary band neurons is very similar to that of neural crest-derived sensory neurons in vertebrates and may provide insights into the evolution of sensory neurons in deuterostomes.


Assuntos
Padronização Corporal/genética , Ectoderma/crescimento & desenvolvimento , Neurogênese/genética , Neurônios/metabolismo , Ouriços-do-Mar/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Butadienos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nitrilas/farmacologia , Proteína Nodal/metabolismo , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/genética , Sinaptotagminas/metabolismo
8.
Development ; 145(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143540

RESUMO

Enteroendocrine cells (EECs) are a minor cell population in the intestine yet they play a major role in digestion, satiety and nutrient homeostasis. Recently developed human intestinal organoid models include EECs, but their rarity makes it difficult to study their formation and function. Here, we used the EEC-inducing property of the transcription factor NEUROG3 in human pluripotent stem cell-derived human intestinal organoids and colonic organoids to promote EEC development in vitro An 8-h pulse of NEUROG3 expression induced expression of known target transcription factors and after 7 days organoids contained up to 25% EECs in the epithelium. EECs expressed a broad array of human hormones at the mRNA and/or protein level, including motilin, somatostatin, neurotensin, secretin, substance P, serotonin, vasoactive intestinal peptide, oxyntomodulin, GLP-1 and INSL5. EECs secreted several hormones including gastric inhibitory polypeptide (GIP), ghrelin, GLP-1 and oxyntomodulin. Injection of glucose into the lumen of organoids caused an increase in both GIP secretion and K-cell number. Lastly, we observed formation of all known small intestinal EEC subtypes following transplantation and growth of human intestinal organoids in mice.


Assuntos
Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Contagem de Células , Diferenciação Celular , Hormônios/metabolismo , Humanos , Intestinos/citologia , Proteínas do Tecido Nervoso/metabolismo , Organoides/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
9.
Exp Physiol ; 106(4): 1061-1071, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33527539

RESUMO

NEW FINDINGS: What is the central question of this study? What is the mechanism of miR-211 in an Alzheimer's disease cell model? What is the main finding and its importance? miR-211 was upregulated in an Alzheimer's disease cell model. It targeted neurogenin 2, reduced the activation of the phosphoinositide 3-kinase-Akt signalling pathway, inhibited the proliferation of the Alzheimer's disease cell model and promoted apoptosis. ABSTRACT: MicroRNAs (miRs) are aberrantly expressed in Alzheimer's disease (AD) patients. This study was intended to investigate the effect of miR-211 on an AD cell model and the involvement of neurogenin 2 (Ngn2). The appropriate dose and time for the effect of Aß1-42 on PC12 cells were determined to establish an AD cell model. An effect of miR-211 expression on cell viability, proliferation and apoptosis was detected after cell transfection. Online prediction and a dual luciferase reporter gene assay were utilized to confirm the binding sequence of miR-211 and Ngn2. qRT-PCR and western blot analysis were applied to measure Ngn2 expression. A gain and loss of function assay of miR-211 and Ngn2 was performed, and activation of the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway was detected. The AD cell model was induced by Aß1-42 treatment. miR-211 expression was significantly enhanced after miR-211 transfection, leading to suppressed proliferation and promotion of apoptosis in Aß1-42 -treated PC12 cells. In addition, miR-211 could downregulate Ngn2 mRNA and protein expression, while overexpression of Ngn2 could reverse the effects of miR-211 on Aß1-42 -treated PC12 cells and significantly enhance the phosphorylated Akt and PI3K protein levels. miR-211 could inhibit growth of PC12 cells by suppressing Ngn2 expression and inactivating the PI3K-Akt signalling pathway.


Assuntos
Doença de Alzheimer , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , MicroRNAs , Proteínas do Tecido Nervoso/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
10.
Diabetologia ; 63(10): 1974-1980, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32894307

RESUMO

Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Pâncreas/embriologia , Fatores de Transcrição/genética , Animais , Linhagem Celular , Diabetes Mellitus/genética , Humanos , Técnicas In Vitro , Células Secretoras de Insulina , Camundongos , Organoides , Pâncreas/metabolismo , Células-Tronco Pluripotentes
11.
FASEB J ; 33(4): 5287-5299, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698461

RESUMO

Overexpression of mouse neurogenin ( Neurog) 2 alone or in combination with mouse Neurog2/1 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can rapidly produce high-yield excitatory neurons. Here, we report a detailed characterization of human neuronal networks induced by the expression of human NEUROG2 together with human NEUROG2/1 in hESCs using molecular, cellular, and electrophysiological measurements over 60 d after induction. Both excitatory synaptic transmission and network firing activity increased over time. Strikingly, inhibitory synaptic transmission and GABAergic cells were identified from NEUROG2/1 induced neurons (iNs). To illustrate the application of such iNs, we demonstrated that the heterozygous knock out of SCN2A, whose loss-of-function mutation is strongly implicated in autism risk, led to a dramatic reduction in network activity in the NEUROG2/1 iNs. Our findings not only extend our understanding of the NEUROG2/1-induced human neuronal network but also substantiate NEUROG2/1 iNs as an in vitro system for modeling neuronal and functional deficits on a human genetic background.-Lu, C., Shi, X., Allen, A., Baez-Nieto, D., Nikish, A., Sanjana, N. E., Pan, J. Q. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Imuno-Histoquímica , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
12.
Dev Biol ; 435(2): 138-149, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331498

RESUMO

Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.


Assuntos
Ectoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Lytechinus/embriologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Fatores de Transcrição/fisiologia , Região do Genoma do Complexo Achaete-Scute/fisiologia , Animais , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lytechinus/citologia , Proteínas de Membrana/fisiologia , Morfolinos/farmacologia , Neurônios/classificação , RNA Antissenso/farmacologia , Receptores Notch/fisiologia
13.
Biochem Biophys Res Commun ; 509(2): 557-563, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30600182

RESUMO

The processes of cell proliferation and differentiation are intimately linked during embryogenesis, and the superfamily of (basic) Helix-Loop-Helix (bHLH) transcription factors play critical roles in these events. For example, neuronal differentiation is promoted by class II bHLH proneural proteins such as Ngn2 and Ascl1, while class VI Hes proteins act to restrain differentiation and promote progenitor maintenance. We have previously described multi-site phosphorylation as a key regulator of tissue specific class II bHLH proteins in all three embryonic germ layers, and this enables coordination of differentiation with the cell cycle. Hes1 homologues also show analogous conserved proline directed kinase sites. Here we have used formation of Xenopus primary neurons to investigate the effects of xHes1 multi-site phosphorylation on both endogenous and ectopic proneural protein-induced neurogenesis. We find that xHes1 is phosphorylated in vivo, and preventing phosphorylation on three conserved SP/TP sites in the N terminus of the protein enhances xHes1 protein stability and repressor activity. Mechanistically, compared to wild-type xHes1, phospho-mutant xHes1 exhibits greater repression of Ngn2 transcription as well as producing a greater reduction in Ngn2 protein stability and chromatin binding. We propose that cell cycle dependent phosphorylation of class VI Hes proteins may act alongside similar regulation of class II bHLH proneural proteins to co-ordinate their activity.


Assuntos
Neurogênese , Fatores de Transcrição HES-1/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Estabilidade Proteica , Fatores de Transcrição HES-1/química , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
14.
Development ; 143(15): 2760-6, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27385016

RESUMO

The neurogenin (Ngn) transcription factors control early neurogenesis and neurite outgrowth in mammalian cortex. In contrast to their proneural activity, their function in neurite growth is poorly understood. Drosophila has a single predicted Ngn homolog, Tap, of unknown function. Here we show that Tap is not a proneural protein in Drosophila but is required for proper axonal growth and guidance of neurons of the mushroom body, a neuropile required for associative learning and memory. Genetic and expression analyses suggest that Tap inhibits excessive axonal growth by fine regulation of the levels of the Wnt signaling adaptor protein Dishevelled.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Neuropeptídeos/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Orientação de Axônios/genética , Orientação de Axônios/fisiologia , Axônios/metabolismo , Polaridade Celular/genética , Drosophila , Proteínas de Drosophila/genética , Corpos Pedunculados/metabolismo , Neuropeptídeos/genética , Ligação Proteica , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética
15.
Development ; 143(24): 4701-4712, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836962

RESUMO

The macula and fovea located at the optical centre of the retina make primate visual perception unique among mammals. Our current understanding of retina ontogenesis is primarily based on animal models having no macula and no fovea. However, the pigeon retina and the human macula share a number of structural and functional properties that justify introducing the former as a new model system for retina development. Comparative transcriptome analysis of pigeon and chicken retinas at different embryonic stages reveals that the genetic programmes underlying cell differentiation are postponed in the pigeon until the end of the period of cell proliferation. We show that the late onset of neurogenesis has a profound effect on the developmental patterning of the pigeon retina, which is at odds with the current models of retina development. The uncoupling of tissue growth and neurogenesis is shown to result from the fact that the pigeon retinal epithelium is inhibitory to cell differentiation. The sum of these developmental features allows the pigeon to build a retina that displays the structural and functional traits typical of primate macula and fovea.


Assuntos
Columbidae/embriologia , Neurogênese/fisiologia , Retina/embriologia , Células Ganglionares da Retina/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Embrião de Galinha , Perfilação da Expressão Gênica , Retina/citologia , Retina/fisiologia , Visão Ocular/fisiologia , Acuidade Visual/fisiologia
16.
Cerebellum ; 18(1): 56-66, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29909450

RESUMO

Zebrin II/aldolase C expression in the normal cerebellum is restricted to a Purkinje cell subset and is the canonical marker for stripes and zones. This spatial restriction has been confirmed in over 30 species of mammals, birds, fish, etc. In a transgenic mouse model in which the Neurogenin 2 gene has been disrupted (Neurog2-/-), the cerebellum is smaller than normal and Purkinje cell dendrites are disordered, but the basic zone and stripe architecture is preserved. Here, we show that in the Neurog2-/- mouse, in addition to the normal Purkinje cell expression, zebrin II is also expressed in a population of cells with a morphology characteristic of microglia. This identity was confirmed by double immunohistochemistry for zebrin II and the microglial marker, Iba1. The expression of zebrin II in cerebellar microglia is not restricted by zone or stripe or lamina. A second zone and stripe marker, PLCß4, does not show the same ectopic expression. When microglia are compared in control vs. Neurog2-/- mice, no difference is seen in apparent number or distribution, suggesting that the ectopic zebrin II immunoreactivity in Neurog2-/- cerebellum reflects an ectopic expression rather than the invasion of a new population of microglia from the periphery. This ectopic expression of zebrin II in microglia is unique as it is not seen in numerous other models of cerebellar disruption, such as in Acp2-/- mice and in human pontocerebellar hypoplasia. The upregulation of zebrin II in microglia is thus specific to the disruption of Neurog2 downstream pathways, rather than a generic response to a cerebellar disruption.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Cerebelo/metabolismo , Microglia/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Fosfatase Ácida/deficiência , Fosfatase Ácida/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cerebelo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/genética , Fosfolipase C beta/metabolismo
17.
Brain Behav Evol ; 93(2-3): 152-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416089

RESUMO

The coordination of progenitor self-renewal, neuronal production, and migration is essential to the normal development and evolution of the cerebral cortex. Numerous studies have shown that the Notch, Wnt/beta-catenin, and Neurogenin pathways contribute separately to progenitor expansion, neurogenesis, and neuronal migration, but it is unknown how these signals are coordinated. In vitro studies suggested that the mastermind-like 1 (MAML1) gene, homologue of the Drosophila mastermind, plays a role in coordinating the aforementioned signaling pathways, yet its role during cortical development remains largely unknown. Here we show that ectopic expression of dominant-negative MAML (dnMAML) causes exuberant neuronal production in the mouse cortex without disrupting neuronal migration. Comparing the transcriptional consequences of dnMAML and Neurog2 ectopic expression revealed a complex genetic network controlling the balance of progenitor expansion versus neuronal production. Manipulation of MAML and Neurog2 in cultured human cerebral stem cells exposed interactions with the same set of signaling pathways. Thus, our data suggest that evolutionary changes that affect the timing, tempo, and density of successive neuronal layers of the small lissencephalic rodent and large convoluted primate cerebral cortex depend on similar molecular mechanisms that act from the earliest developmental stages.


Assuntos
Córtex Cerebral/fisiologia , Proteínas de Ligação a DNA/fisiologia , Redes Reguladoras de Genes/fisiologia , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Feminino , Feto , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais , Proteínas Nucleares/genética , Gravidez , Transdução de Sinais/genética , Fatores de Transcrição/genética
18.
Biotechnol Lett ; 41(6-7): 873-887, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073804

RESUMO

OBJECTIVE: Human dental pulp-derived stem cells (hDPSCs) are becoming an attractive source for cell-based neurorestorative therapies. As such, it is important to understand the molecular mechanisms that regulate the differentiation of hDPSCs toward the neuronal fate. Notch signaling plays key roles in neural stem/progenitor cells (NS/PCs) maintenance and prevention of their differentiation. The aim of this study was to address the effects of Notch signaling inhibition on neurosphere formation of hDPSCs and neuronal differentiation of hDPSCs-neurospheres. RESULTS: hDPSCs were isolated from third molar teeth. The cultivated hDPSCs highly expressed CD90 and CD44 and minimally presented CD34 and CD45 surface markers. The osteo/adipogenic differentiation of hDPSCs was documented. hDPSCs were cultured in neural induction medium and N-[N-(3,5-difluorophenacetyl-L-alanyl)]-Sphenylglycine t-butyl ester (DAPT) was applied to impede Notch signaling during transformation into spheres or on the formed neurospheres. Our results showed that the size and number of neurospheres decreased and the expression profile of nestin, sox1 and pax6 genes reduced provided DAPT. Treatment of the formed neurospheres with DAPT resulted in the cleaved Notch1 reduction, G0/G1 arrest and a decline in L-lactate production. DAPT significantly reduced hes1 and hey1 genes, while ascl1 and neurogenin2 expressions augmented. The number of MAP2 positive cells improved in the DAPT-treated group. CONCLUSIONS: Our findings demonstrated the Notch activity in hDPSCs-neurospheres. DAPT treatment positively regulated proneural genes expression and increased neuronal-like differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/efeitos dos fármacos , Receptores Notch/antagonistas & inibidores , Células Cultivadas , Polpa Dentária , Expressão Gênica , Humanos
19.
Dev Biol ; 431(1): 36-47, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751238

RESUMO

Entero-endocrine cells involved in the regulation of digestive function form a large and diverse cell population within the intestinal epithelium of all animals. Together with absorptive enterocytes and secretory gland cells, entero-endocrine cells are generated by the embryonic endoderm and, in the mature animal, from a pool of endoderm derived, self-renewing stem cells. Entero-endocrine cells share many structural/functional and developmental properties with sensory neurons, which hints at the possibility of an ancient evolutionary relationship between these two cell types. We will survey in this article recent findings that emphasize the similarities between entero-endocrine cells and sensory neurons in vertebrates and insects, for which a substantial volume of data pertaining to the entero-endocrine system has been compiled. We will then report new findings that shed light on the specification and morphogenesis of entero-endocrine cells in Drosophila. In this system, presumptive intestinal stem cells (pISCs), generated during early metamorphosis, undergo several rounds of mitosis that produce the endocrine cells and stem cells (ISCs) with which the fly is born. Clonal analysis demonstrated that individual pISCs can give rise to endocrine cells expressing different types of peptides. Immature endocrine cells start out as unpolarized cells located basally of the gut epithelium; they each extend an apical process into the epithelium which establishes a junctional complex and apical membrane specializations contacting the lumen of the gut. Finally, we show that the Drosophila homolog of ngn3, a bHLH gene that defines the entero-endocrine lineage in mammals, is expressed and required for the differentiation of this cell type in the fly gut.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Biológica , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Linhagem da Célula/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Modelos Biológicos , Morfogênese/genética , Neuropeptídeos/genética , Fatores de Transcrição/genética , Vertebrados/anatomia & histologia , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
20.
J Neurochem ; 145(3): 188-203, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29168882

RESUMO

Many neuropsychiatric disorders are thought to result from subtle changes in neural circuit formation. We used human embryonic stem cells and induced pluripotent stem cells (hiPSCs) to model mature, post-mitotic excitatory neurons and examine effects of fibroblast growth factor 2 (FGF2). FGF2 gene expression is known to be altered in brain regions of major depressive disorder (MDD) patients and FGF2 has anti-depressive effects in animal models of depression. We generated stable inducible neurons (siNeurons) conditionally expressing human neurogenin-2 (NEUROG2) to generate a homogenous population of post-mitotic excitatory neurons and study the functional as well as the transcriptional effects of FGF2. Upon induction of NEUROG2 with doxycycline, the vast majority of cells are post-mitotic, and the gene expression profile recapitulates that of excitatory neurons within 6 days. Using hES cell lines that inducibly express NEUROG2 as well as GCaMP6f, we were able to characterize spontaneous calcium activity in these neurons and show that calcium transients increase in the presence of FGF2. The FGF2-responsive genes were determined by RNA-Seq. FGF2-regulated genes previously identified in non-neuronal cell types were up-regulated (EGR1, ETV4, SPRY4, and DUSP6) as a result of chronic FGF2 treatment of siNeurons. Novel neuron-specific genes were also identified that may mediate FGF2-dependent increases in synaptic efficacy including NRXN3, SYT2, and GALR1. Since several of these genes have been implicated in MDD previously, these results will provide the basis for more mechanistic studies of the role of FGF2 in MDD.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Linhagem Celular , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA