Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 65-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942610

RESUMO

Hypertension represents a major worldwide cause of death and disability, and it is becoming increasingly clear that available therapies are not sufficient to reduce the risk of major cardiovascular events. Various mechanisms contribute to blood pressure increase: neurohormonal activation, autonomic nervous system imbalance, and immune activation. Of note, the brain is an important regulator of blood pressure levels; it recognizes the peripheral perturbation and organizes a reflex response by modulating immune system and hormonal release to attempt at restoring the homeostasis. The connection between the brain and peripheral organs is mediated by the autonomic nervous system, which also modulates immune and inflammatory responses. Interestingly, an increased autonomic nervous system activity has been correlated with an altered immune response in cardiovascular diseases. The spleen is the largest immune organ exerting a potent influence on the cardiovascular system during disease and is characterized by a dense noradrenergic innervation. Taken together, these aspects led to hypothesize a key role of neuroimmune mechanisms in the onset and progression of hypertension. This review discusses how the nervous and splenic immune systems interact and how the mechanisms underlying the neuroimmune cross talk influence the disease progression.


Assuntos
Hipertensão , Baço , Humanos , Sistema Imunitário , Sistema Nervoso Autônomo , Encéfalo
2.
J Neuroinflammation ; 21(1): 51, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368427

RESUMO

BACKGROUND: Thyroid eye disease (TED) is highly correlated with dysregulated immunoendocrine status. The insular cortex was found to regulate peripheral inflammation and immunomodulation in mice. This study aimed to explore whether the insular cortex in patients with TED played a modulatory role including the aberrant brain functional alteration and its association with immunoendocrine status. METHODS: This study included 34 active patients (AP), 30 inactive patients (IP) with TED, and 45 healthy controls (HC) matched for age, sex, and educational level. Comprehensive clinical details (especially immunoendocrine markers) and resting-state functional magnetic resonance imaging data were collected from each participant. The amplitude of low-frequency fluctuation (ALFF) was used to probe the aberrant alterations of local neural activity. The seed-based functional connectivity (FC) analysis was used to explore the relationship between the insular cortex and each voxel throughout the whole brain. The correlation analysis was conducted to assess the association between insular neurobiomarkers and immunoendocrine parameters. RESULTS: When compared with the IP and HC groups, the AP group displayed significantly higher ALFF values in the right insular cortex (INS.R) and lower FC values between the INS.R and the bilateral cerebellum. None of the neurobiomarkers differed between the IP and HC groups. Besides, correlations between insular neurobiomarkers and immunoendocrine markers (free thyroxine, the proportion of T cells, and natural killer cells) were identified in both AP and IP groups. CONCLUSIONS: This study was novel in reporting that the dysregulation of the insular cortex activity in TED was associated with abnormal peripheral immunoendocrine status. The insular cortex might play a key role in central-peripheral system interaction in TED. Further research is crucial to enhance our understanding of the central-peripheral system interaction mechanisms involved in autoimmune diseases.


Assuntos
Oftalmopatia de Graves , Córtex Insular , Humanos , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Encéfalo , Mapeamento Encefálico/métodos
3.
Exp Dermatol ; 33(5): e15104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38794817

RESUMO

Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.


Assuntos
Sistema Nervoso Central , Interleucina-17 , Interleucina-23 , Psoríase , Psoríase/metabolismo , Psoríase/imunologia , Humanos , Sistema Nervoso Central/metabolismo , Interleucina-23/metabolismo , Interleucina-17/metabolismo , Neuroimunomodulação , Neuropeptídeos/metabolismo , Inflamação/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Transdução de Sinais
4.
Expert Opin Emerg Drugs ; 29(1): 45-56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296815

RESUMO

INTRODUCTION: Autism spectrum disorder (ASD) is an early-onset disorder with a prevalence of 1% among children and reported disability-adjusted life years of 4.31 million. Irritability is a challenging behavior associated with ASD, for which medication development has lagged. More specifically, pharmacotherapy effectiveness may be limited against high adverse effects (considering side effect profiles and patient medication sensitivity); thus, the possible benefits of pharmacological interventions must be balanced against potential adverse events in each patient. AREAS COVERED: After reviewing the neuropathophysiology of ASD-associated irritability, the benefits and tolerability of emerging medications in its treatment based on randomized controlled trials were detailed in light of mechanisms and targets of action. EXPERT OPINION: Succeeding risperidone and aripiprazole, monotherapy with memantine may be beneficial. In addition, N-acetylcysteine, galantamine, sulforaphane, celecoxib, palmitoylethanolamide, pentoxifylline, simvastatin, minocycline, amantadine, pregnenolone, prednisolone, riluzole, propentofylline, pioglitazone, and topiramate, all adjunct to risperidone, and clonidine and methylphenidate outperformed placebo. These effects were through glutamatergic, γ-aminobutyric acidergic, inflammatory, oxidative, cholinergic, dopaminergic, and serotonergic systems. All medications were reported to be safe and tolerable. Considering sample size, follow-up, and effect size, further studies are necessary. Along with drug development, repositioning and combining existing drugs supported by the mechanism of action is recommended.


Assuntos
Antipsicóticos , Transtorno do Espectro Autista , Criança , Humanos , Risperidona/efeitos adversos , Antipsicóticos/efeitos adversos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/induzido quimicamente , Aripiprazol/uso terapêutico , Riluzol
5.
Neuroimmunomodulation ; 31(1): 25-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128499

RESUMO

INTRODUCTION: The thymus is the primary lymphoid organ responsible for normal T-cell development. Yet, in abnormal metabolic conditions as well as an acute infection, the organ exhibits morphological and cellular alterations. It is well established that the immune system is in a tidy connection and dependent on the central nervous system (CNS), which regulates thymic function by means of innervation and neurotransmitters. Sympathetic innervation leaves the CNS and spreads through thymic tissue, where nerve endings interact directly or indirectly with thymic cells contributing to their maintenance and development. METHODS: Herein, we hypothesized that brain damage due to an inflammatory process might elicit alterations upon the thymic-CNS neuroimmune axis, altering not just the sympathetic innervation and neurotransmitter release, but also modifying the thymus microenvironment and T-cell development. We used the well-established multiple sclerosis model of experimental autoimmune encephalomyelitis (EAE), to study putative changes in the thymic neural, lymphoid, and microenvironmental compartments. RESULTS: We showed that along with EAE clinical development, thymus morphology, and cellular compartments are affected, altering the peripheric T-cell population and modifying the retrograde thymic communication toward the CNS. CONCLUSION: Altogether, our data suggest that the thymic-CNS neuroimmune bidirectional axis is compromised in EAE. This imbalance may contribute to an increased and uncontrolled auto-immune reaction.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Humanos , Timo , Linfócitos T/metabolismo , Neuroimunomodulação
6.
Rheumatol Int ; 44(1): 1-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814148

RESUMO

The vagus nerve forms intricate neural connections with an extensive number of organs, particularly the digestive system. The vagus nerve has a pivotal role as a fundamental component of the autonomic nervous system, exhibiting an essential effect. It establishes a direct link with the parasympathetic system, consequently eliciting the synaptic release of acetylcholine. Recent studies have revealed the potential anti-inflammatory function of the vagus nerve. The activation of the hypothalamic system through the stimulation of vagal afferents is fundamentally involved in regulating inflammation. This activation process leads to the production of cortisol. The other mechanism, defined as the cholinergic anti-inflammatory pathway, is characterized by the involvement of vagal efferents. These fibers release the neurotransmitter acetylcholine at particular synaptic connections, involving interactions with macrophages and enteric neurons. The mechanism under consideration is ascribed to the α-7-nicotinic acetylcholine receptors. The fusion of acetylcholine receptors is responsible for the restricted secretion of inflammatory mediators by macrophages. A potential mechanism for anti-inflammatory effects involves the stimulation of the sympathetic system through the vagus nerve, leading to the control of immunological responses within the spleen. This article offers an extensive summary of the present knowledge regarding the therapeutic effectiveness of stimulating the vagus nerve in managing inflammatory rheumatic conditions based on the relationship of inflammation with the vagus nerve. Furthermore, the objective is to present alternatives that may be preferred while applying vagus nerve stimulation approaches.


Assuntos
Doenças Reumáticas , Estimulação do Nervo Vago , Humanos , Acetilcolina/metabolismo , Inflamação/terapia , Anti-Inflamatórios , Doenças Reumáticas/terapia
7.
Artigo em Inglês | MEDLINE | ID: mdl-39354696

RESUMO

AIM: Current treatments for obsessive-compulsive disorder (OCD) encounter resistance and limiting adverse events, necessitating novel therapeutic strategies. This study aimed to investigate the benefits of naproxen, a medication with effects on inflammation and neuronal function, on OCD. METHODS: One hundred and four OCD outpatients with a Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score of >21 were equally assigned to receive fluoxetine plus either naproxen 250 mg or matched placebo q12hr. Patients were assessed using the Y-BOCS by recording the subscale scores at baseline and weeks 5 and 10 to evaluate efficacy. They were also assessed in terms of tolerability. RESULTS: Data from 96 patients were analyzed. The baseline characteristics were comparable between the groups. There were significant time-treatment interaction effects on the obsession subscale ( η P 2 $$ {\eta}_P^2 $$ = 0.055) and total ( η P 2 $$ {\eta}_P^2 $$ = 0.043) scores of Y-BOCS. Reductions in the obsession subscale and total scores of Y-BOCS were significantly greater in the fluoxetine plus naproxen group until the endpoint (Cohen's d = 0.560 and Cohen's d = 0.477, respectively). However, the difference in compulsion subscale score changes between the groups was not significant. Respondents with a reduction of ≥35% in Y-BOCS total scores were significantly more in the fluoxetine plus naproxen group (80.0% versus 47.8%). The side effect frequencies were comparable between the groups. CONCLUSION: Naproxen, adjunct to fluoxetine, outperformed adjunctive placebo in treating obsession and total symptoms of OCD patients in a safe and tolerable manner. CLINICAL TRIAL REGISTRATION: The study protocol was registered and published in the Iranian Registry of Clinical Trials (http://www.irct.ir; registration number IRCT20090117001556N139).

8.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273641

RESUMO

The research in neuroimmunomodulation aims to shed light on the complex relationships that exist between the immune and neurological systems and how they affect the human body. This multidisciplinary field focuses on the way immune responses are influenced by brain activity and how neural function is impacted by immunological signaling. This provides important insights into a range of medical disorders. Targeting both brain and immunological pathways, neuroimmunomodulatory approaches are used in clinical pain management to address chronic pain. Pharmacological therapies aim to modulate neuroimmune interactions and reduce inflammation. Furthermore, bioelectronic techniques like vagus nerve stimulation offer non-invasive control of these systems, while neuromodulation techniques like transcranial magnetic stimulation modify immunological and neuronal responses to reduce pain. Within the context of aging, neuroimmunomodulation analyzes the ways in which immunological and neurological alterations brought on by aging contribute to cognitive decline and neurodegenerative illnesses. Restoring neuroimmune homeostasis through strategies shows promise in reducing age-related cognitive decline. Research into mood disorders focuses on how immunological dysregulation relates to illnesses including anxiety and depression. Immune system fluctuations are increasingly recognized for their impact on brain function, leading to novel treatments that target these interactions. This review emphasizes how interdisciplinary cooperation and continuous research are necessary to better understand the complex relationship between the neurological and immune systems.


Assuntos
Neuroimunomodulação , Humanos , Encéfalo/imunologia , Encéfalo/metabolismo , Animais , Envelhecimento/imunologia , Estimulação do Nervo Vago/métodos
9.
Metab Brain Dis ; 38(8): 2831-2847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37650987

RESUMO

The anti-inflammatory and neuroprotective effects of short chain fatty acid (SCFA) butyrate have been explored in a wide array of neurological pathologies. It is a 4-carbon SCFA produced from the fermentation of dietary fibers by the gut-microbiota. As evident from previous literature, butyrate plays a wide array of functions in CNS and interestingly enhances the differentiation potential of Neural stem/Progenitor Cells (NSPCs). Japanese encephalitis virus (JEV) is a well-known member of the Flaviviridae family and has been shown to alter neural stem cell pool of the brain, causing devastating consequences. In this study, we administered sodium butyrate (NaB) post JEV infection in BALB/c mouse model to examine any possible amelioration of the viral infection in NSPCs. In addition, ex vivo neurospheres and in vitro model of NSPCs were also used to study the effect of sodium butyrate in JEV infection. As an unprecedented finding, butyrate treated infected animals presented early onset of symptoms, as compared to their respective JEV infected groups. Alongside, we observed an increased viral load in NSPCs isolated from these animals as well as in cell culture models upon sodium butyrate treatment. Cytometric bead array analysis also revealed an increase in inflammatory cytokines, particularly, MCP-1 and IL-6. Further, increased expression of the key members of the canonical NF-κB pathway, viz-a-viz p-NF-κB, p-Iκ-Bα and p-IKK was observed. Overall, the increased inflammation and cell death caused early symptom progression in NaB-treated JEV infected animal model, which is contradictory to the well documented protective nature of NaB and therefore a better understanding of SCFA-based modulation of the gut-brain axis in viral infections is required.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Células-Tronco Neurais , Animais , Camundongos , Encefalite Japonesa/metabolismo , Encefalite Japonesa/patologia , Ácido Butírico/farmacologia , NF-kappa B , Células-Tronco Neurais/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Modelos Teóricos
10.
HNO ; 71(6): 413-421, 2023 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-37171595

RESUMO

Allergic rhinitis is an IgE-mediated, type­2 inflammatory disease. neuropeptides are released by neurons and interact with immune cells. Via colocalization, neuroimmune cell units such as nerve-mast cell units, nerve-type 2 innate lymphoid cell (ILC2) units, nerve-eosinophil units, and nerve-basophil units are formed. Markedly elevated tryptase levels were found in nasal lavage fluid and were strongly associated with neuropeptide levels. A close anatomical connection allows bidirectional communication between immune and neuronal cells. Transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin repeat 1 (TRPA1) are critically involved in immunological reactions in the setting of allergic rhinitis. Neuroimmunological communication plays an important role in the inflammatory process, so that allergic rhinitis can no longer be considered a purely immunological disease, but rather a combined neuroimmunological disease.


Assuntos
Imunidade Inata , Rinite Alérgica , Humanos , Linfócitos , Triptases , Neurônios , Mucosa Nasal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA