Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(15): 7397-7402, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30898886

RESUMO

A puzzle of language is how speakers come to use the same words for particular meanings, given that there are often many competing alternatives (e.g., "sofa," "couch," "settee"), and there is seldom a necessary connection between a word and its meaning. The well-known process of random drift-roughly corresponding in this context to "say what you hear"-can cause the frequencies of alternative words to fluctuate over time, and it is even possible for one of the words to replace all others, without any form of selection being involved. However, is drift alone an adequate explanation of a shared vocabulary? Darwin thought not. Here, we apply models of neutral drift, directional selection, and positive frequency-dependent selection to explain over 417,000 word-use choices for 418 meanings in two natural populations of speakers. We find that neutral drift does not in general explain word use. Instead, some form of selection governs word choice in over 91% of the meanings we studied. In cases where one word dominates all others for a particular meaning-such as is typical of the words in the core lexicon of a language-word choice is guided by positive frequency-dependent selection-a bias that makes speakers disproportionately likely to use the words that most others use. This bias grants an increasing advantage to the common form as it becomes more popular and provides a mechanism to explain how a shared vocabulary can spontaneously self-organize and then be maintained for centuries or even millennia, despite new words continually entering the lexicon.


Assuntos
Modelos Teóricos , Fonética , Humanos
2.
Mol Biol Evol ; 35(3): 525-542, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136190

RESUMO

Although any genotype-phenotype relationships are a result of evolution, little is known about how natural selection and neutral drift, two distinct driving forces of evolution, operate to shape the relationships. By analyzing ∼500 yeast quantitative traits, we reveal a basic "supervisor-worker" gene architecture underlying a trait. Supervisors are often identified by "perturbational" approaches (such as gene deletion), whereas workers, which usually show small and statistically insignificant deletion effects, are tracked primarily by "observational" approaches that examine the correlation between gene activity and trait value across a number of conditions. Accordingly, supervisors provide most of the genetic understandings of the trait whereas workers provide rich mechanistic understandings. Further analyses suggest that most observed supervisor-worker interactions may evolve largely neutrally, resulting in pervasive between-worker epistasis that suppresses the tractability of workers. In contrast, a fraction of supervisors are recruited/maintained by natural selection to build worker co-expression, boosting the tractability of workers. Thus, by revealing a supervisor-worker gene architecture underlying complex traits, the opposite roles of natural selection versus neutral drift in shaping the gene architecture, and the complementary strengths of the perturbational and observational research strategies in characterizing the gene architecture, this study may lay a new conceptual foundation for understanding the molecular basis of complex traits.

3.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G64-G74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359083

RESUMO

The normal intestinal epithelium is continuously regenerated at a rapid rate from actively cycling Lgr5-expressing intestinal stem cells (ISCs) that reside at the crypt base. Recent mathematical modeling based on several lineage-tracing studies in mice shows that the symmetric cell division-dominant neutral drift model fits well with the observed in vivo growth of ISC clones and suggests that symmetric divisions are central to ISC homeostasis. However, other studies suggest a critical role for asymmetric cell division in the maintenance of ISC homeostasis in vivo. Here, we show that the stochastic branching and Moran process models with both a symmetric and asymmetric division mode not only simulate the stochastic growth of the ISC clone in silico but also closely fit the in vivo stem cell dynamics observed in lineage-tracing studies. In addition, the proposed model with highest probability for asymmetric division is more consistent with in vivo observations reported here and by others. Our in vivo studies of mitotic spindle orientations and lineage-traced progeny pairs indicate that asymmetric cell division is a dominant mode used by ISCs under normal homeostasis. Therefore, we propose the asymmetric cell division-dominant neutral drift model for normal ISC homeostasis. NEW & NOTEWORTHY The prevailing mathematical model suggests that intestinal stem cells (ISCs) divide symmetrically. The present study provides evidence that asymmetric cell division is the major contributor to ISC maintenance and thus proposes an asymmetric cell division-dominant neutral drift model. Consistent with this model, in vivo studies of mitotic spindle orientation and lineage-traced progeny pairs indicate that asymmetric cell division is the dominant mode used by ISCs under normal homeostasis.


Assuntos
Divisão Celular Assimétrica/fisiologia , Homeostase/fisiologia , Intestinos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Mucosa Intestinal/citologia , Camundongos , Regeneração/fisiologia
4.
New Phytol ; 220(2): 624-635, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028022

RESUMO

Following allopolyploid formation, extensive genome evolution occurs, with the eventual loss of many homeologous gene copies. Although this process of diploidization has occurred many times independently, the evolutionary forces determining the probability and rate of gene loss remain poorly understood. Here, we conduct genome and transcriptome sequencing in a broad sample of Chinese accessions of Capsella bursa-pastoris, a recently formed allotetraploid. Our whole genome data reveal three groups of these accessions: an Eastern group from low-altitude regions, a Western group from high-altitude regions, and a much more differentiated Northwestern group. Population differentiation in total expression was limited among closely related populations; by contrast, the relative expression of the two homeologous copies closely mirrors the genome-wide SNP divergence. Consistent with this, we observe a negative correlation between expression changes in the two homeologues. However, genes showing population genomic evidence for adaptive evolution do not show an enrichment for expression divergence between homeologues, providing no clear evidence for adaptive shifts in relative gene expression. Overall, these patterns suggest that neutral drift may contribute to the population differentiation in the expression of the homeologues, and drive eventual gene loss over longer periods of time.


Assuntos
Capsella/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Tetraploidia , Genética Populacional , Genoma de Planta , Geografia , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência de Aminoácidos
5.
BMC Bioinformatics ; 17(1): 242, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27315797

RESUMO

BACKGROUND: Protein variability can now be studied by measuring high-resolution tolerance-to-substitution maps and fitness landscapes in saturated mutational libraries. But these rich and expensive datasets are typically interpreted coarsely, restricting detailed analyses to positions of extremely high or low variability or dubbed important beforehand based on existing knowledge about active sites, interaction surfaces, (de)stabilizing mutations, etc. RESULTS: Our new webserver PsychoProt (freely available without registration at http://psychoprot.epfl.ch or at http://lucianoabriata.altervista.org/psychoprot/index.html ) helps to detect, quantify, and sequence/structure map the biophysical and biochemical traits that shape amino acid preferences throughout a protein as determined by deep-sequencing of saturated mutational libraries or from large alignments of naturally occurring variants. DISCUSSION: We exemplify how PsychoProt helps to (i) unveil protein structure-function relationships from experiments and from alignments that are consistent with structures according to coevolution analysis, (ii) recall global information about structural and functional features and identify hitherto unknown constraints to variation in alignments, and (iii) point at different sources of variation among related experimental datasets or between experimental and alignment-based data. Remarkably, metabolic costs of the amino acids pose strong constraints to variability at protein surfaces in nature but not in the laboratory. This and other differences call for caution when extrapolating results from in vitro experiments to natural scenarios in, for example, studies of protein evolution. CONCLUSION: We show through examples how PsychoProt can be a useful tool for the broad communities of structural biology and molecular evolution, particularly for studies about protein modeling, evolution and design.


Assuntos
Biologia Computacional/métodos , Mutação , Proteínas/química , Alinhamento de Sequência/métodos , Sequência de Aminoácidos , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , Análise de Sequência de DNA/métodos , Relação Estrutura-Atividade
6.
J Pathol ; 234(1): 1-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24797291

RESUMO

The intestinal crypt has become the archetypal system to understand stem cell behaviour in vivo. Advances in lineage-tracing technology have identified rapidly cycling stem cells at the crypt base with prominent expression of 'marker' genes such as Lgr5. Elegant quantitative analysis of lineage-tracing data has shown that each stem cell within the crypt is in continual neutral competition with the others in order to retain its place in the niche and so prevent differentiation into a specialized lineage. Accordingly, it appears that the regulation of the stem cell pool occurs primarily at the level of the stem cell population, as a simple consequence of competition for the limited space within the niche. However, contradictory data showing that cells located away from the crypt base niche can also sometimes function as stem cells has challenged the notion that stemness is fundamentally cell-extrinsic. Writing in Nature, Ritsma and colleagues have resolved this debate by performing in vivo live-imaging of the crypt base. By tracking individual stem cells over time, they showed that the relative positioning of the cell within the niche stochastically regulates its fate. Stem cells located in close proximity to the crypt base were more likely to persist long-term, but peripheral cells could sometimes move into privileged crypt-base positions. Thus, while many cells within the crypt have stem cell potential, only cells lucky enough to reside in the 'Goldilocks zone' behave as functional stem cells in the long term. The hunt for intestinal stem cells is over: the stem cells are simply found in their niche.


Assuntos
Mucosa Intestinal/fisiologia , Celulas de Paneth/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Camundongos , Celulas de Paneth/citologia , Células-Tronco/citologia
7.
Protein Sci ; 32(8): e4719, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402140

RESUMO

Neutral mutational drift is an important source of biological diversity that remains underexploited in fundamental studies of protein biophysics. This study uses a synthetic transcriptional circuit to study neutral drift in protein tyrosine phosphatase 1B (PTP1B), a mammalian signaling enzyme for which conformational changes are rate limiting. Kinetic assays of purified mutants indicate that catalytic activity, rather than thermodynamic stability, guides enrichment under neutral drift, where neutral or mildly activating mutations can mitigate the effects of deleterious ones. In general, mutants show a moderate activity-stability tradeoff, an indication that minor improvements in the activity of PTP1B do not require concomitant losses in its stability. Multiplexed sequencing of large mutant pools suggests that substitutions at allosterically influential sites are purged under biological selection, which enriches for mutations located outside of the active site. Findings indicate that the positional dependence of neutral mutations within drifting populations can reveal the presence of allosteric networks and illustrate an approach for using synthetic transcriptional systems to explore these mutations in regulatory enzymes.


Assuntos
Mamíferos , Proteínas , Animais , Mutação , Domínio Catalítico , Sítio Alostérico
8.
Cell Stem Cell ; 25(3): 342-356.e7, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422913

RESUMO

The gastric corpus epithelium is the thickest part of the gastrointestinal tract and is rapidly turned over. Several markers have been proposed for gastric corpus stem cells in both isthmus and base regions. However, the identity of isthmus stem cells (IsthSCs) and the interaction between distinct stem cell populations is still under debate. Here, based on unbiased genetic labeling and biophysical modeling, we show that corpus glands are compartmentalized into two independent zones, with slow-cycling stem cells maintaining the base and actively cycling stem cells maintaining the pit-isthmus-neck region through a process of "punctuated" neutral drift dynamics. Independent lineage tracing based on Stmn1 and Ki67 expression confirmed that rapidly cycling IsthSCs maintain the pit-isthmus-neck region. Finally, single-cell RNA sequencing (RNA-seq) analysis is used to define the molecular identity and lineage relationship of a single, cycling, IsthSC population. These observations define the identity and functional behavior of IsthSCs.


Assuntos
Células-Tronco Adultas/citologia , Mucosa Gástrica/citologia , Estômago/citologia , Células-Tronco Adultas/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular , Células Cultivadas , Mucosa Gástrica/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Estatmina/metabolismo , Nicho de Células-Tronco
9.
Stem Cell Res ; 30: 1-11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777801

RESUMO

The use of mice that are mosaic for reporter gene expression underlies many lineage-tracing studies in stem cell biology. For example, using mosaic LacZ reporter mice, it was shown that limbal epithelial stem cells (LESCs) around the periphery of the cornea maintain radial sectors of the corneal epithelium and that radial stripe numbers declined with age. Originally, the corneal results were interpreted as progressive, age-related loss or irreversible inactivation of some LESC clones. In this study we used computer simulations to show that these results could also be explained by stochastic replacement of LESCs by neighbouring LESCs, leading to neutral drift of LESC populations. This was shown to reduce the number of coherent clones of LESCs and hence would coarsen the mosaic pattern in the corneal epithelium without reducing the absolute number of LESCs. Simulations also showed that corrected stripe numbers declined more slowly when LESCs were grouped non-randomly and that mosaicism was rarely lost unless simulated LESC numbers were unrealistically low. Possible reasons why age-related changes differ between mosaic corneal epithelia and other systems, such as adrenal cortices and intestinal crypts, are discussed.


Assuntos
Células Epiteliais/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco/metabolismo , Animais , Proliferação de Células , Simulação por Computador , Humanos , Camundongos , Células-Tronco/citologia
10.
AMB Express ; 7(1): 103, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28545260

RESUMO

Aldaric acids represent biobased 'top value-added chemicals' that have the potential to substitute petroleum-derived chemicals. Until today they are mostly produced from corresponding aldoses using strong chemical oxidizing agents. An environmentally friendly and more selective process could be achieved by using natural resources such as seaweed or pectin as raw material. These contain large amounts of uronic acids as major constituents such as glucuronic acid and galacturonic acid which can be converted into the corresponding aldaric acids via an enzyme-based oxidation using uronate dehydrogenase (Udh). The Udh from Agrobacterium tumefaciens (UdhAt) features the highest catalytic efficiency of all characterized Udhs using glucuronic acid as substrate (829 s-1 mM-1). Unfortunately, it suffers from poor thermostability. To overcome this limitation, we created more thermostable variants using semi-rational design. The amino acids for substitution were chosen according to the B factor in combination with four additional knowledge-based criteria. The triple variant A41P/H101Y/H236K showed higher kinetic and thermodynamic stability with a T 5015 value of 62.2 °C (3.2 °C improvement) and a ∆∆GU of 2.3 kJ/mol compared to wild type. Interestingly, it was only obtained when including a neutral mutation in the combination.

11.
Stem Cell Reports ; 8(6): 1479-1487, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28479306

RESUMO

Intestinal epithelial renewal is mediated by intestinal stem cells (ISCs) that exist in a state of neutral drift, wherein individual ISC lineages are regularly lost and born but ISC numbers remain constant. To test whether an active mechanism maintains stem cell pools in the Drosophila midgut, we performed partial ISC depletion. In contrast to the mouse intestine, Drosophila ISCs failed to repopulate the gut after partial depletion. Even when the midgut was challenged to regenerate by infection, ISCs retained normal proportions of asymmetric division and ISC pools did not increase. We discovered, however, that the loss of differentiated midgut enterocytes (ECs) slows when ISC division is suppressed and accelerates when ISC division increases. This plasticity in rates of EC turnover appears to facilitate epithelial homeostasis even after stem cell pools are compromised. Our study identifies unique behaviors of Drosophila midgut cells that maintain epithelial homeostasis.


Assuntos
Intestinos/citologia , Células-Tronco/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterócitos/citologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Canamicina/toxicidade , Pseudomonas/patogenicidade , Receptores Notch/genética , Receptores Notch/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Ecol Lett ; 8(9): 925-932, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34517685

RESUMO

Pathogens are a main driving force of the evolution of plants and animals. Being resistant to diseases confers a high selective advantage to hosts, yet many host-pathogen systems show a remarkable degree of polymorphism of host resistance and pathogen virulence. The most common explanation of this phenomenon is that both resistance and virulence genes are costly and that there is selection against those genes when they are unnecessary. Here, we use stochastic multi-locus simulations to show that the origin and the maintenance of genetic polymorphism in plant-pathogen systems can be explained without costs. In multi-locus gene-for-gene systems, temporal domination of a super pathogen can cause polymorphism in resistance through neutral drift. With an increasing number of susceptible alleles in the host population, pathogen types other than the super race are able to cause infections and invade the population, leading to higher pathogen diversity and in turn to higher host diversity.

13.
Cell Mol Gastroenterol Hepatol ; 1(1): 41-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28247864

RESUMO

Barrett's esophagus is characterized by the erosive replacement of esophageal squamous epithelium by a range of metaplastic glandular phenotypes. These glandular phenotypes likely change over time, and their distribution varies along the Barrett's segment. Although much recent work has addressed Barrett's esophagus from the genomic viewpoint-its genotype space-the fact that the phenotype of Barrett's esophagus is nonstatic points to conversion between phenotypes and suggests that Barrett's esophagus also exists in phenotype space. Here we explore this latter concept, investigating the scope of glandular phenotypes in Barrett's esophagus and how they exist in physical and temporal space as well as their evolution and their life history. We conclude that individual Barrett's glands are clonal units; because of this important fact, we propose that it is the Barrett's gland that is the unit of selection in phenotypic and indeed neoplastic progression. Transition between metaplastic phenotypes may be governed by neutral drift akin to niche turnover in normal and dysplastic niches. In consequence, the phenotype of Barrett's glands assumes considerable importance, and we make a strong plea for the integration of the Barrett's gland in both genotype and phenotype space in future work.

14.
Funct Ecol ; 29(5): 627-639, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26346191

RESUMO

1. The prevalence of phylogenetic niche conservatism (PNC) in nature is still a conflicting issue. Disagreement arises from confusion over its precise definition and the variety of approaches to measure its prevalence. Recent work highlighted that common measures of PNC strongly depend on the assumptions of the underlying model of niche evolution. However, this warning has not been well recognized in the applied literature and questionable approaches are still frequently applied. 2. The aim of this paper is to draw attention to the assumptions underlying commonly applied simple measures of PNC. We used a series of simulations to illustrate how misleading results can be if assumptions of niche evolution are violated, that the violation of assumptions is a common phenomenon and that testing assumptions requires in-depth pre-test. 3. We conclude that the seemingly simple measures of PNC, such as phylogenetic sign6al and evolutionary rate, are not so easy to apply if one accounts for the necessity to test model assumptions. In addition, these measures can be difficult to interpret. The common assumption that strong phylogenetic signal indicates PNC will be often invalid. In addition, the interpretation of some measures, e.g. the conclusion that evolutionary rate is slow enough to indicate PNC, requires a comparison with another clade, another trait or well-developed null model assumptions and thus additional data. 4. We suggest that studies investigating PNC should always compare alternative evolutionary models, and that model comparisons should in particular include flexible niche evolution models such as multiple-optima OU models, although these are computational intensive. These models are directly inherited from the concept of macro-evolutionary adaptive landscape, and can indicate PNC either by relative few peak shifts or by narrow peaks in the adaptive landscape. A test of PNC thus requires comparing these parameters of the macroevolutionary landscape between clades or time periods. 5. The general prevalence of PNC in nature should be evaluated only based on studies keeping up to the high standards of communicating the used definition of PNC, testing the assumptions made in the modelling approaches and including newly developed models in a model comparison approach.

15.
Mol Cell Oncol ; 1(3): e970069, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27308359

RESUMO

Stem cell and crypt dynamics in the human gut have been remarkably poorly characterized. We used random somatic mutations to trace stem cell lineages in the human intestine and coupled these data with mathematical modeling to infer the in vivo temporal dynamics of human intestinal stem cells.

16.
Genome Biol Evol ; 6(8): 1938-48, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25062922

RESUMO

Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses.


Assuntos
Infecções por Pneumocystis/microbiologia , Pneumocystis carinii/genética , Animais , Evolução Biológica , Evolução Molecular , Deleção de Genes , Genoma Fúngico , Genômica , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas , Pneumocystis carinii/patogenicidade , Pneumocystis carinii/fisiologia
17.
Front Oncol ; 3: 264, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24133655

RESUMO

Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs) reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple "non-Darwinian" way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA