Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 241(3): 1062-1073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950517

RESUMO

High-latitude ecosystems are warming faster than other biomes and are often dominated by a ground layer of Ericaceous shrubs, which can respond positively to warming. The carbon-for-nitrogen (C-for-N) exchange between Ericaceous shrubs and root-associated fungi may underlie shrub responses to warming, but has been understudied. In a glasshouse setting, we examined the effects of warming on the C-for-N exchange between the Ericaceous shrub Empetrum nigrum ssp. hermaphroditum and its root-associated fungi. We applied different 13 C and 15 N isotope labels, including a simple organic N form (glycine) and a complex organic N form (moss litter) and quantified their assimilation into soil, plant biomass, and root fungal biomass pools. We found that warming lowered the amount of 13 C partitioned to root-associated fungi per unit of glycine 15 N assimilated by E. nigrum, but only in the short term. By contrast, warming increased the amount of 13 C partitioned to root-associated fungi per unit of moss 15 N assimilated by E. nigrum. Our study suggests that climate warming affects the short-term exchange of C and N between a widespread Ericaceous shrub and root-associated fungi. Furthermore, while most isotope tracing studies use labile N sources, we demonstrate that a ubiquitous recalcitrant N source may produce contrasting results.


Assuntos
Ecossistema , Nitrogênio , Carbono , Solo , Fungos , Isótopos , Glicina
2.
Glob Chang Biol ; 30(4): e17290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651789

RESUMO

Soil organic nitrogen (N) mineralization not only supports ecosystem productivity but also weakens carbon and N accumulation in soils. Recalcitrant (mainly mineral-associated organic matter) and labile (mainly particulate organic matter) organic materials differ dramatically in nature. Yet, the patterns and drivers of recalcitrant (MNrec) and labile (MNlab) organic N mineralization rates and their consequences on ecosystem N retention are still unclear. By collecting MNrec (299 observations) and MNlab (299 observations) from 57 15N tracing studies, we found that soil pH and total N were the master factors controlling MNrec and MNlab, respectively. This was consistent with the significantly higher rates of MNrec in alkaline soils and of MNlab in natural ecosystems. Interestingly, our analysis revealed that MNrec directly stimulated microbial N immobilization and plant N uptake, while MNlab stimulated the soil gross autotrophic nitrification which discouraged ammonium immobilization and accelerated nitrate production. We also noted that MNrec was more efficient at lower precipitation and higher temperatures due to increased soil pH. In contrast, MNlab was more efficient at higher precipitation and lower temperatures due to increased soil total N. Overall, we suggest that increasing MNrec may lead to a conservative N cycle, improving the ecosystem services and functions, while increasing MNlab may stimulate the potential risk of soil N loss.


Assuntos
Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Nitrogênio/metabolismo , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Nitrificação , Ciclo do Nitrogênio
3.
Glob Chang Biol ; 29(14): 4028-4043, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186000

RESUMO

Leguminous plants are an important component of terrestrial ecosystems and significantly increase soil nitrogen (N) cycling and availability, which affects productivity in most ecosystems. Clarifying whether the effects of legumes on N cycling vary with contrasting ecosystem types and climatic regions is crucial for understanding and predicting ecosystem processes, but these effects are currently unknown. By conducting a global meta-analysis, we revealed that legumes increased the soil net N mineralization rate (Rmin ) by 67%, which was greater than the recently reported increase associated with N deposition (25%). This effect was similar for tropical (53%) and temperate regions (81%) but was significantly greater in grasslands (151%) and forests (74%) than in croplands (-3%) and was greater in in situ incubation (101%) or short-term experiments (112%) than in laboratory incubation (55%) or long-term experiments (37%). Legumes significantly influenced the dependence of Rmin on N fertilization and experimental factors. The Rmin was significantly increased by N fertilization in the nonlegume soils, but not in the legume soils. In addition, the effects of mean annual temperature, soil nutrients and experimental duration on Rmin were smaller in the legume soils than in the nonlegume soils. Collectively, our results highlighted the significant positive effects of legumes on soil N cycling, and indicated that the effects of legumes should be elucidated when addressing the response of soils to plants.


Assuntos
Ecossistema , Fabaceae , Solo , Florestas , Nitrogênio/análise , Plantas
4.
J Anim Ecol ; 92(10): 2016-2027, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565516

RESUMO

1. Experimental studies across biomes demonstrate that herbivores can have significant effects on ecosystem functioning. Herbivore effects, however, can be highly variable with studies demonstrating positive, neutral or negative relationships between herbivore presence and different components of ecosystems. Mixed effects are especially likely in the soil, where herbivore effects are largely indirect mediated through effects on plants. 2. We conducted a long-term experiment to disentangle the effects of non-native moose in boreal forests on plant communities, nutrient cycling, soil composition and soil organism communities. 3. To explore the effect of moose on soils, we conduct separate analyses on the soil organic and mineral horizons. Our data come from 11 paired exclosure-control plots in eastern and central Newfoundland, Canada that provide insight into 22-25 years of moose herbivory. We fit piecewise structural equations models (SEM) to data for the organic and mineral soil horizons to test different pathways linking moose to above-ground and below-ground functioning. 4. The SEMs revealed that moose exclusion had direct positive impacts on adult tree count and an indirect negative impact on shrub percent cover mediated by adult tree count. We detected no significant impact of moose on soil microbial C:N ratio or net nitrogen mineralization in the organic or mineral soil horizon. Soil temperature and moisture, however, was more than twice as variable in the presence (i.e. control) than absence (i.e. exclosure) of moose. Overall, we observed clear impacts of moose on above-ground forest components with limited indirect effects below-ground. Even after 22-25 years of exclusion, we did not find any evidence of moose impacts on soil microbial C:N ratio and net nitrogen mineralization. 5. Our long-term study and mechanistic path analysis demonstrates that soils can be resilient to ungulate herbivore effects despite evidence of strong effects above-ground. Long-term studies and analyses such as this one are relatively rare yet critical for reconciling some of the context-dependency observed across studies of ungulates effects on ecosystem functions. Such studies may be particularly valuable in ecosystems with short growing seasons such as the boreal forest.

5.
J Environ Manage ; 336: 117647, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905690

RESUMO

Biological soil crust (BSC) exists widely in many kinds of grassland, its effect on soil mineralization in grazing systems has well been studied, but the impacts and threshold of grazing intensity on BSC have rarely been reported. This study focused on the dynamics of nitrogen mineralization rate in biocrust subsoils affected by grazing intensity. We studied the changes in BSC subsoil physicochemical properties and nitrogen mineralization rates under four sheep grazing intensities (i.e., 0, 2.67, 5.33, and 8.67 sheep ha-1) in seasons of spring (May-early July), summer (July-early September), and autumn (September-November). Although this moderate grazing intensity contributes to the growth and recovery of BSCs, we found that moss was more vulnerable to trampling than lichen, which means the physicochemical properties of the moss subsoil are more intense. Changes in soil physicochemical properties and nitrogen mineralization rates were significantly higher under 2.67-5.33 sheep ha-1 than other grazing intensities (Saturation phase). In addition, the structural equation model (SEM) showed that the main response path was grazing, which affected subsoil physicochemical properties through the joint mediation of BSC (25%) and vegetation (14%). Then, the further positive effect on nitrogen mineralization rate and the influence of seasonal fluctuations on the system was fully considered. We found that solar radiation and precipitation all had significant promoting effects on soil nitrogen mineralization rates, the overall seasonal fluctuation has a direct effect of 18% on the rate of nitrogen mineralization. This study revealed the effects of grazing on BSC and the results may enable a better statistical quantification of BSC functions and provide a theoretical basis to formulate grazing strategies in the grazing system of sheep in Loess Plateau even worldwide (BSC symbiosis).


Assuntos
Nitrogênio , Solo , Animais , Ovinos , Solo/química , Nitrogênio/análise , Estações do Ano , China , Microbiologia do Solo , Pradaria
6.
Environ Monit Assess ; 195(4): 467, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917357

RESUMO

Soil application of pyrolyzed biomass (biochar) has been proposed as an effective strategy for managing degraded land, but its limitations as a sole nutrient supplier discourage its widespread application as a soil amendment. Excessive use of saline water for irrigation leads to buildup of salts and other toxic ions, which cause a decline in the availability of essential nutrients due to negative effects on the mineralization process. Therefore, a long-term incubation experiment was conducted for 52 weeks to study the individual or combined impact of pyrolyzed [biochar derived from rice residue (RB)] and unpyrolyzed organic materials [rice residue (RR) and animal manure (AM)] on nitrogen (N) dynamics in soil irrigated with water of varying electrical conductivity (EC) (EC0.3 [non-saline canal water), EC10, and EC15 dS m-1 (saline)]. Increasing salinity had an adverse effect on N mineralization, reducing it by 20-70% during the incubation period. Irrespective of the EC, soil amended with AM showed greater and faster N mineralization than unamended control, while individual application of RB or RR showed immobilization of N during the early period of incubation. However, conjoint application of pyrolyzed (RB) and unpyrolyzed organic materials (RR or AM) showed enhanced mineralized N content (26-96%) compared with the sole biochar-amended soil irrigated with water of different EC levels. It was most likely due to the synergic effect of unpyrolyzed materials on the mineralization rate of biochar. On the other hand, the high cation exchange capacity, large surface area, and greater total porosity of the biochar may cause stronger adsorption of free NH4+-N released from the labile organic amendments, thereby moderating the N mineralization process under saline conditions. Therefore, it is recommended that biochar be used in conjunction with AM or RR to ensure the prolonged availability of N in a saline environment.


Assuntos
Nitrogênio , Solo , Animais , Solo/química , Nitrogênio/análise , Monitoramento Ambiental , Carvão Vegetal/química , Águas Salinas , Esterco
7.
Ecol Monogr ; 92(4): e1529, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36590329

RESUMO

Climate change is causing range shifts of many species to higher latitudes and altitudes and increasing their exposure to extreme weather events. It has been shown that range-shifting plant species may perform differently in new soil than related natives; however, little is known about how extreme weather events affect range-expanding plants compared to related natives. In this study we used outdoor mesocosms to study how range-expanding plant species responded to extreme drought in live soil from a habitat in a new range with and without live soil from a habitat in the original range (Hungary). During summer drought, the shoot biomass of the range-expanding plant community declined. In spite of this, in the mixed community, range expanders produced more shoot biomass than congeneric natives. In mesocosms with a history of range expanders in the previous year, native plants produced less biomass. Plant legacy or soil origin effects did not change the response of natives or range expanders to summer drought. During rewetting, range expanders had less biomass than congeneric natives but higher drought resilience (survival) in soils from the new range where in the previous year native plant species had grown. The biomass patterns of the mixed plant communities were dominated by Centaurea spp.; however, not all plant species within the groups of natives and of range expanders showed the general pattern. Drought reduced the litter decomposition, microbial biomass, and abundances of bacterivorous, fungivorous, and carnivorous nematodes. Their abundances recovered during rewetting. There was less microbial and fungal biomass, and there were fewer fungivorous nematodes in soils from the original range where range expanders had grown in the previous year. We concluded that in mixed plant communities of range expanders and congeneric natives, range expanders performed better, under both ambient and drought conditions, than congeneric natives. However, when considering the responses of individual species, we observed variations among pairs of congenerics, so that under the present mixed-community conditions there was no uniformity in responses to drought of range expanders versus congeneric natives. Range-expanding plant species reduced soil fungal biomass and the numbers of soil fungivorous nematodes, suggesting that the effects of range-expanding plant species can trickle up in the soil food web.

8.
Glob Chang Biol ; 28(19): 5820-5830, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833333

RESUMO

Given that global change is predicted to increase the frequency and severity of drought in temperate forests, it is critical to understand the degree to which plant belowground responses cascade through the soil system to drive ecosystem responses to water stress. While most research has focused on plant and microbial responses independently of each other, a gap in our understanding lies in the integrated response of plant-microbial interactions to water stress. We investigated the extent to which divergent belowground responses to reduced precipitation between sugar maple trees (Acer saccharum) versus oak trees (Oak spp.) may influence microbial activity via throughfall exclusion in the field. Evidence that oak trees send carbon belowground to prime microbial activity more than maples under ambient conditions and in response to water stress suggests there is the potential for corresponding impacts of reduced precipitation on microbial activity. As such, we tested the hypothesis that differences in belowground C allocation between oaks and maples would stimulate microbial activity in the oak treatment soils and reduce microbial activity in in the sugar maple treatment soils compared to their respective controls. We found that the treatment led to declines in N mineralization, soil respiration, and oxidative enzyme activity in the sugar maple treatment plot. These declines may be due to sugar maple trees reducing root C transfers to the soil. By contrast, the reduced precipitation treatment enhanced soil respiration, as well as rates of N mineralization and peroxidase activity in the oak rhizosphere. This enhanced activity suggests that oak roots provided optimal rhizosphere conditions during water stress to prime microbial activity to support net primary production. With future changes in precipitation predicted for forests in the Eastern US, we show that the strength of plant-microbial interactions drives the degree to which reduced precipitation impacts soil C and nutrient cycling.


Assuntos
Acer , Quercus , Carbono , Desidratação , Ecossistema , Florestas , Raízes de Plantas , Solo , Microbiologia do Solo , Árvores
9.
Oecologia ; 199(2): 419-426, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35670872

RESUMO

Increases in nitrogen (N) inputs to the biosphere can exacerbate the introduction and spread of invasive non-native plant species. Often, with elevated soil N levels, invasive plants establish and further enrich soil N pools, changing overall ecosystem function. This study examined the relationship between soil N cycling and an increasingly prevalent, invasive plant species, tall oatgrass (Arrhenatherum elatius subsp. elatius), in foothills ecosystems between the Colorado Rocky Mountains and the Denver-Boulder Metropolitan area-similar to many Western US grasslands and woodlands. It focused on investigating differences in soil N transformations, inorganic N pools, and vegetation characteristics across invaded and uninvaded plots at three sites in two seasons (summer and autumn). There was a statistically significant effect of invasion on rates of net N mineralization, but it was dependent on site and season (p = 0.046). Site had a statistically significant effect on soil moisture and aboveground biomass C:N (p < 0.04). The interactions of invasion x site were statistically significant for ammonium pools (p < 0.03). These findings suggest that A. elatius invasion can be associated with accelerated N cycling, but that the nature of the relationship differs by location and season in the foothills. More broadly, this study contributes to determining how the N cycle is shifting in grassland ecosystems subject to increasing pressures from anthropogenic change.


Assuntos
Ecossistema , Solo , Pradaria , Espécies Introduzidas , Nitrogênio/análise , Ciclo do Nitrogênio , Plantas , Poaceae
10.
Plant Cell Environ ; 44(4): 1231-1242, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175402

RESUMO

Plant roots interact with rhizosphere microorganisms to accelerate soil organic matter (SOM) mineralization for nutrient acquisition. Root-mediated changes in SOM mineralization largely depend on root-derived carbon (root-C) input and soil nutrient status. Hence, intraspecific competition over plant development and spatiotemporal variability in the root-C input and nutrients uptake may modify SOM mineralization. To investigate the effect of intraspecific competition on SOM mineralization at three growth stages (heading, flowering, and ripening), we grew maize (C4 plant) under three planting densities on a C3 soil and determined in situ soil C- and N-mineralization by 13 C-natural abundance and 15 N-pool dilution approaches. From heading to ripening, soil C- and N-mineralization rates exhibit similar unimodal trends and were tightly coupled. The C-to-N-mineralization ratio (0.6 to 2.6) increased with N availability, indicating that an increase in N-mineralization with N depletion was driven by microorganisms mining N-rich SOM. With the intraspecific competition, plants increased specific root lengths as an efficient strategy to compete for resources. Root morphologic traits rather than root biomass per se were positively related to C- and N-mineralization. Overall, plant phenology and intraspecific competition controlled the intensity and mechanisms of soil C- and N- mineralization by the adaptation of root traits and nutrient mining.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Desenvolvimento Vegetal/fisiologia , Rizosfera , Ecologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/fisiologia
11.
Glob Chang Biol ; 27(22): 5950-5962, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407262

RESUMO

Soil gross nitrogen (N) mineralization (GNM), a key microbial process in the global N cycle, is mainly controlled by climate and soil properties. This study provides for the first time a comprehensive analysis of the role of soil physicochemical properties and climate and their interactions with soil microbial biomass (MB) in controlling GNM globally. Through a meta-analysis of 970 observations from 337 published papers from various ecosystems, we found that GNM was positively correlated with MB, total carbon, total N and precipitation, and negatively correlated with bulk density (BD) and soil pH. Our multivariate analysis and structural equation modeling revealed that GNM is driven by MB and dominantly influenced by BD and precipitation. The higher total N accelerates GNM via increasing MB. The decrease in BD stimulates GNM via increasing total N and MB, whereas higher precipitation stimulates GNM via increasing total N. Moreover, the GNM varies with ecosystem type, being greater in forests and grasslands with high total carbon and MB contents and low BD and pH compared to croplands. The highest GNM was observed in tropical wet soils that receive high precipitation, which increases the supply of soil substrate (total N) to microbes. Our findings suggest that anthropogenic activities that affect soil microbial population size, BD, soil substrate availability, or soil pH may interact with changes in precipitation regime and land use to influence GNM, which may ultimately affect ecosystem productivity and N loss to the environment.


Assuntos
Nitrogênio , Solo , Carbono , Ecossistema , Nitrogênio/análise , Microbiologia do Solo
12.
Arch Microbiol ; 203(7): 4281-4291, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34100101

RESUMO

The application of Trichoderma spp. has the potential to reduce not only mineral fertilizer use in agriculture but also improve soil health through increased soil biological activity. Trichoderma spp. have shown potential as bio-control agents and plant growth promoting ability, but little attention has been paid to the effect of Trichoderma spp. inoculation on nutrient availability and the soil microbiome. In this study, we evaluated the effect of Trichoderma spp. inoculation on nitrogen mineralization and quantified soil enzymatic activities along with plant growth promotion potential. The influence of Trichoderma spp. and organic amendments on the soil fungal community was also investigated. For this purpose, pots and incubation experiment was carried out, and seven treatments were set as follows; poultry compost (PC), poultry compost + RW309 (PCT), cattle compost (CC), cattle compost + RW309 (CCT), rapeseed oil cake (OC), inorganic fertilizer (N) and only soil (S) were set as control. We evaluated that Trichoderma sp. RW309 produced indole-3-acetic acid, which suggested that it could contribute to plant growth enhancement during early plant growth. Inoculation of RW309 with organic materials stimulated nitrogen mineralization and increased soil phosphatase activity. Furthermore, RW309 altered the fungal community in rhizosphere soil. However, cattle compost was a more suitable culture medium for RW309 than poultry compost in terms of nitrogen mineralization, soil enzyme activity, and growth of RW309. In conclusion, Trichoderma sp. RW309 could be considered for use as a bioorganic fertilizer in combination with organic compost to minimize the use of mineral fertilizers.


Assuntos
Compostagem , Fungos , Micobioma , Plantas , Microbiologia do Solo , Trichoderma , Animais , Bovinos , Enzimas/metabolismo , Fungos/fisiologia , Plantas/microbiologia , Trichoderma/fisiologia
13.
Environ Geochem Health ; 43(3): 1155-1164, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32419088

RESUMO

Heavy metal pollution is a serious problem in wetland ecosystems, and the toxicity of heavy metals affects microorganisms, thus influencing the biogeochemical process of nitrogen (N). To investigate the effects of heavy metal cadmium (Cd) pollution on N mineralization in urban constructed wetland soils of the Pearl River Delta, a 40-day aerobic incubation experiment was conducted under three Cd addition treatments [no Cd addition (control), low Cd addition (LCA) and high Cd addition (HCA)]. The results showed that compared with the control, the LCA treatment enhanced the soil N mineralization rate (RM), while the HCA treatment inhibited RM, with the average RM values in the control treatment of 0.40 mg kg-1 day-1, LCA treatments (0.66 mg kg-1 day-1), and HCA treatments (0.21 mg kg-1 day-1). The average ammonification rate values in the LCA treatments (- 3.15 to 2.25 mg kg-1 day-1) were higher than those in the HCA treatments (- 2.39 to 0.74 mg kg-1 day-1) and the control treatment (- 0.68 to 0.90 mg kg-1 day-1) (P < 0.05). However, the nitrification values in the HCA treatments (- 0.37 to 3.36 mg kg-1 day-1) were higher than those in the LCA treatments (0.42-1.93 mg kg-1 day-1) and the control treatment (0.20-1.45 mg kg-1 day-1) (P < 0.05). The net N mineralization accumulation generally increased over the entire incubation time in different Cd addition treatments. The percentage of NH4+-N to total inorganic N showed a decrease, while an increase was observed for NO3--N over the incubation time. The urease activities were significantly inhibited in the LCA and HCA treatments and showed a "decreasing before increasing" trend. The abundance of ammonia oxidizing archaea (AOA) was higher in the two Cd addition treatments than the control treatment, and higher in the LCA treatments than in the HCA treatment. AOA was the dominant microorganism in the ammonia oxidation process of N mineralization in constructed wetland soils. The findings of this work indicate that Cd addition has a profound effect on the balance of N mineralization and may further impact the plant productivity and water quality of constructed wetlands.


Assuntos
Cádmio/química , Nitrogênio/química , Solo/química , Áreas Alagadas , China , Ecossistema , Minerais/química , Rios
14.
Glob Chang Biol ; 26(2): 960-970, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529564

RESUMO

Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing-induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro-food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom-up effects on soil micro-food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro-food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro-food webs and then weakened the correlation between soil micro-food webs and soil C and N mineralization. These results suggest that changes in soil micro-food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land-use changes.


Assuntos
Ecossistema , Solo , Animais , Biomassa , Cadeia Alimentar , Pradaria , Herbivoria
15.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32786128

RESUMO

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Assuntos
Nitrogênio , Solo , Animais , Ecossistema , Fertilização , Pradaria , Herbivoria , Humanos , Nitrogênio/análise
16.
Ecotoxicol Environ Saf ; 199: 110678, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32402898

RESUMO

NaCl and Na2SO4 are the foremost salt compositions in coastal wetlands, while their effects on soil net nitrogen mineralization still remain unclear. Aimed at investigating the two salt compositions on soil net nitrogen mineralization, a 30-day laboratory incubation experiment was respectively conducted by adding 5‰ NaCl and Na2SO4 to incubated coastal wetland soils under aerobic conditions. Our results showed that Na2SO4 addition increased the rates of mineralization (Rmin) by an average of 33.03% and nitrification (Rnit) by 23.84% during the incubation (p < 0.05). In contrast, NaCl addition significantly reduced Rmin by 71% and Rnit by 44% at day 7 (p < 0.05). The activities of fluorescein diacetate, arylamidase and urease in Na2SO4 addition treatments were higher than those in NaCl addition treatment. These results demonstrated the ion-specific effects of salt type on nitrogen mineralization rates and enzyme activities.


Assuntos
Nitrogênio/análise , Cloreto de Sódio/química , Solo/química , Sulfatos/química , Áreas Alagadas , Aerobiose , Chenopodiaceae/crescimento & desenvolvimento , China , Nitrificação , Rios/química , Salinidade , Cloreto de Sódio/administração & dosagem , Microbiologia do Solo , Sulfatos/administração & dosagem , Urease/metabolismo
17.
Glob Chang Biol ; 25(3): 1078-1088, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30589163

RESUMO

Soil net nitrogen mineralization rate (Nmin ), which is critical for soil nitrogen availability and plant growth, is thought to be primarily controlled by climate and soil physical and/or chemical properties. However, the role of microbes on regulating soil Nmin has not been evaluated on the global scale. By compiling 1565 observational data points of potential net Nmin from 198 published studies across terrestrial ecosystems, we found that Nmin significantly increased with soil microbial biomass, total nitrogen, and mean annual precipitation, but decreased with soil pH. The variation of Nmin was ascribed predominantly to soil microbial biomass on global and biome scales. Mean annual precipitation, soil pH, and total soil nitrogen significantly influenced Nmin through soil microbes. The structural equation models (SEM) showed that soil substrates were the main factors controlling Nmin when microbial biomass was excluded. Microbe became the primary driver when it was included in SEM analysis. SEM with soil microbial biomass improved the Nmin prediction by 19% in comparison with that devoid of soil microbial biomass. The changes in Nmin contributed the most to global soil NH4+ -N variations in contrast to climate and soil properties. This study reveals the complex interactions of climate, soil properties, and microbes on Nmin and highlights the importance of soil microbial biomass in determining Nmin and nitrogen availability across the globe. The findings necessitate accurate representation of microbes in Earth system models to better predict nitrogen cycle under global change.


Assuntos
Ciclo do Nitrogênio , Nitrogênio/química , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Biomassa , Clima , Ecossistema , Concentração de Íons de Hidrogênio , Modelos Teóricos , Plantas/metabolismo
18.
Soil Biol Biochem ; 130: 73-81, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31579309

RESUMO

Proteins comprise the largest soil N reservoir but cannot be taken up directly by microorganisms and plants due to size constraints and stabilization of proteins in organo-mineral associations. Therefore the cleavage of this high molecular weight organic N to smaller soluble compounds as amino acids is a key step in the terrestrial N cycle. In the last years two isotope pool dilution approaches have been successfully established to measure gross rates of protein depolymerization and microbial amino acid uptake in soils. However, both require laborious sample preparation and analyses, which limits sample throughput. Therefore, we here present a novel isotope pool dilution approach based on the addition of 15N-labeled amino acids to soils and subsequent concentration and 15N analysis by the oxidation of α-amino groups to NO2 - and further reduction to N2O, followed by purge-and-trap isotope ratio mass spectrometry (PT-IRMS). We applied this method in mesocosm experiments with forest and meadow soils as well as with a cropland soil amended with either organic C (cellulose) or organic N (bovine serum albumin). To measure direct organic N mineralization to NH4 +, the latter was captured in acid traps and analyzed by an elemental analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS). Our results demonstrate that the proposed method provides fast and precise measurements of at%15N even at low amino acid concentrations, allows high sample throughput and enables parallel estimations of instantaneous organic N mineralization rates.

19.
Environ Monit Assess ; 190(9): 563, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30167903

RESUMO

Chronic elevated nitrogen (N) deposition has altered the N status of temperate forests, with significant implications for ecosystem function. The Bear Brook Watershed in Maine (BBWM) is a whole paired watershed manipulation experiment established to study the effects of N and sulfur (S) deposition on ecosystem function. N was added bimonthly as (NH4)2SO4 to one watershed from 1989 to 2016, and research at the site has studied the evolution of ecosystem response to the treatment through time. Here, we synthesize results from 27 years of research at the site and describe the temporal trend of N availability and N mineralization at BBWM in response to chronic N deposition. Our findings suggest that there was a delayed response in soil N dynamics, since labile soil N concentrations did not show increases in the treated watershed (West Bear, WB) compared to the reference watershed (East Bear, EB) until after the first 4 years of treatment. Labile N became increasingly available in WB through time, and after 25 years of manipulations, treated soils had 10× more extractable ammonium than EB soils. The WB soils had 200× more extractable nitrate than EB soils, driven by both, high nitrate concentrations in WB and low nitrate concentrations in EB. Nitrification rates increased in WB soils and accounted for ~ 50% of net N mineralization, compared to ~ 5% in EB soils. The study provides evidence of the decadal evolution in soil function at BBWM and illustrates the importance of long-term data to capture ecosystem response to chronic disturbance.


Assuntos
Monitoramento Ambiental , Florestas , Nitrificação , Nitrogênio/análise , Rios , Solo/química , Compostos de Amônio/análise , Ecossistema , Maine , Nitratos/análise , Árvores
20.
Ecology ; 98(4): 1117-1129, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130777

RESUMO

The supply of nitrogen (N) constrains primary productivity in many ecosystems, raising the question "what controls the availability and cycling of N"? As a step toward answering this question, we evaluated N cycling processes and aspects of their regulation on a climate gradient on Kohala Volcano, Hawaii, USA. The gradient extends from sites receiving <300 mm/yr of rain to those receiving >3,000 mm/yr, and the pedology and dynamics of rock-derived nutrients in soils on the gradient are well understood. In particular, there is a soil process domain at intermediate rainfall within which ongoing weathering and biological uplift have enriched total and available pools of rock-derived nutrients substantially; sites at higher rainfall than this domain are acid and infertile as a consequence of depletion of rock-derived nutrients, while sites at lower rainfall are unproductive and subject to wind erosion. We found elevated rates of potential net N mineralization in the domain where rock-derived nutrients are enriched. Higher-rainfall sites have low rates of potential net N mineralization and high rates of microbial N immobilization, despite relatively high rates of gross N mineralization. Lower-rainfall sites have moderately low potential net N mineralization, relatively low rates of gross N mineralization, and rates of microbial N immobilization sufficient to sequester almost all the mineral N produced. Bulk soil δ15 N also varied along the gradient, from +4‰ at high rainfall sites to +14‰ at low rainfall sites, indicating differences in the sources and dynamics of soil N. Our analysis shows that there is a strong association between N cycling and soil process domains that are defined using soil characteristics independent of N along this gradient, and that short-term controls of N cycling can be understood in terms of the supply of and demand for N.


Assuntos
Clima , Ciclo do Nitrogênio , Havaí , Nitrogênio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA