Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(11): e2305905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926774

RESUMO

To overcome the low efficiency of overall water splitting, highly effective and stable catalysts are in urgent need, especially for the anode oxygen evolution reaction (OER). In this case, nickel selenides appear as good candidates to catalyze OER and other substitutable anodic reactions due to their high electronic conductivity and easily tunable electronic structure to meet the optimized adsorption ability. Herein, an interesting phase transition from the hexagonal phase of NiSe (H-NiSe) to the rhombohedral phase of NiSe (R-NiSe) induced by the doping of cobalt atoms is reported. The five-coordinated R-NiSe is found to grow adjacent to the six-coordinated H-NiSe, resulting in the formation of the H-NiSe/R-NiSe heterostructure. Further characterizations and calculations prove the reduced splitting energy for R-NiSe and thus the less occupancy in the t2g orbits, which can facilitate the electron transfer process. As a result, the Co2 -NiSe/NF shows a satisfying catalytic performance toward OER, hydrogen evolution reaction, and (hybrid) overall water splitting. This work proves that trace amounts of Co doping can induce the phase transition from H-NiSe to R-NiSe. The formation of less-coordinated species can reduce the t2g occupancy and thus enhance the catalytic performance, which might guide rational material design.

2.
Small ; 19(8): e2206098, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507610

RESUMO

Design and development of low-cost and highly efficient non-precious metal electrocatalysts for hydrogen evolution reaction (HER) in an acidic medium are key issues to realize the commercialization of proton exchange membrane water electrolyzers. Ni is regarded as an ideal alternative to substitute Pt for HER based on the similar electronic structure and low price as well. However, low intrinsic activity and poor stability in acid restrict its practical applications. Herein, a new approach is reported to encapsulate Ni nanoparticles (NPs) into interlayer edges of N-doped Nb2 CTx MXene (Ni NPs@N-Nb2 CTx ) by an electrochemical process. The as-prepared Ni NPs@N-Nb2 CTx possesses Pt-like onset potentials and can reach 500 mA cm-2 at overpotentials of only 383 mV, which is much higher than that of N-Nb2 CTx supported Ni NPs synthesized by a wet-chemical method (w- Ni NPs/N-Nb2 CTx ). Furthermore, it shows high durability toward HER with a large current density of 300 mA cm-2 for 24 h because of the encapsulated structure against corrosion, oxidation as well as aggregation of Ni NPs in an acidic medium. Detailed structural characterization and density functional theory calculations reveal that the stronger interaction boosts the HER.

3.
Sci Technol Adv Mater ; 17(1): 37-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877856

RESUMO

Co nanoparticles (Co NPs) and nanoscale tungsten carbide (WC) are successfully synthesized simultaneously with mesoporous structured carbon black (C) using an innovative simple method, which is known as solution plasma processing (SPP), and NPs are also loaded onto carbon black at the same time by SPP. The introduction of Co NPs led to not only superior oxygen reduction reaction (ORR) activity in terms of onset potential and peak potential, but also to a more efficient electron transfer process compared to that of pure WC. Co-WC/C also showed durability for long-term operation better than that of commercial Pt/C. These results clearly demonstrate that the presence of Co NPs significantly enhanced the ORR and charge transfer number of neighboring WC NPs in ORR activities. In addition, it was proved that SPP is a simple method (from synthesis of NPs and carbon black to loading on carbon black) for the large-scale synthesis of NP-carbon composite. Therefore, SPP holds great potential as a candidate for next-generation synthetic methods for the production of NP-carbon composites.

4.
Chem Asian J ; 18(7): e202300016, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772837

RESUMO

The construction of efficient non-precious metal electrocatalysts for oxygen reduction reaction (ORR) with controlled structures and active sites is of fundamental importance for the wide utilization of hydrogen fuel cells. Herein, we report a controllable chemical fixation strategy that enables the simultaneous optimization in both of local and external structure of the Fe-N-C catalyst. The post-synthetic single-atomic chemical fixation of Fe2+ ions in coordinated-free bi-pyridine sites combined with the carbonation afford a Fe2 N-embedded N-doped graphene nanoribbon (Fe2 N/NGNR) with dispersing Fe2 N nanoparticles embedded in NGNR. When used as ORR electrocatalyst, Fe2 N/NGNR exhibits a half-wave potential of 0.87 V and 0.79 V vs. RHE in alkaline and acid medium, respectively, comparable to commercial Pt/C (20 wt%) catalysts. The prominent ORR activity of Fe2 N/NGNR is verified an H2 -O2 fuel cell which displayed a peak power density of 307.7 mW/cm2 when using the Fe2 N/NGNR as the catalyst in the cathode electrode.

5.
Chempluschem ; 86(9): 1307-1315, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34519445

RESUMO

Integrating electrolytic hydrogen production from water with thermodynamically more favorable aqueous organic oxidation reactions is highly desired, because it can enhance the energy conversion efficiency in relation to traditional water electrolysis, and produce value-added chemicals instead of oxygen at the anode. In this Minireview, we introduce some key considerations for anodic auxiliary electrosynthesis and outline three types of electrocatalytic organic reactions including biomass derivative, alcohol and amine oxidation reactions, which can boost cathodic hydrogen generation. Furthermore, frequently used noble-metal-free electrocatalysts are classified into nickel-based, cobalt-based, other transition-metal-based and bimetallic electrocatalysts. The preparation methods of these catalysts and their performance towards electrochemical oxidation reactions are also discussed in detail. We specifically highlight the importance of redox active sites on the surface of the electrocatalysts, which act as electron mediators to promote oxidation reactions. Finally, the current challenges and future developments in this emerging field are also discussed.

6.
J Colloid Interface Sci ; 537: 238-246, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447479

RESUMO

The development of oxygen reaction reduction (ORR) electrocatalysts that are low-cost, highly-active and have long-term stability for use in energy conversion and storage applications such as fuel cells and metal-air batteries is very important. In this paper, a facile one-step pyrolysis method was used to prepare bamboo-like N-doped carbon nanotubes (BNCNTs) as effective ORR electrocatalysts. Manganese and cobalt salts were used as the metal precursors, and urea was the C and N source. The resulting catalysts were characterized by the scanning electron microscopy, high resolution-transmission electron microscopy, X-ray photoelectron spectroscopy, Raman microscopy and X-ray power diffraction. The BNCNTs contained Mn and Co nanoparticles that were coated with graphitic carbon. The electrochemical performances of the catalysts in alkaline media were evaluated using cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The BNCNTs prepared with a Mn to Co molar ratio of 1:1 at 800 °C had the best catalytic activity. The reaction followed a quasi-4 electron reaction pathway with a smaller Tafel slope (57.5 mV dec-1) than that of the commercial Pt/C (72.8 mV dec-1). In addition, the limiting current density, durability and methanol crossover resistance were all superior to those of Pt/C. The above results indicate that Mn/Co-BNCNTs-800 is an active electrocatalyst with earth-abundant non-precious elements for ORR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA