RESUMO
BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous hereditary neuropathy, and CMT1A is the most common form; it is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. Mutations in the transient sodium channel Nav1.4 alpha subunit (SCN4A) gene underlie a diverse group of dominantly inherited nondystrophic myotonias that run the spectrum from subclinical myopathy to severe muscle stiffness, disabling weakness, or frank episodes of paralysis. CASE PRESENTATION: We describe a Chinese family affected by both CMT1A and myotonia with concomitant alterations in both the PMP22 and SCN4A genes. In this family, the affected proband inherited the disease from his father in an autosomal dominant manner. Genetic analysis confirmed duplication of the PMP22 gene and a missense c.3917G > C (p. Gly1306Ala) mutation in SCN4A in both the proband and his father. The clinical phenotype in the proband showed the combined involvement of skeletal muscle and peripheral nerves. Electromyography showed myopathic changes, including myotonic discharges. MRI revealed the concurrence of neurogenic and myogenic changes in the lower leg muscles. Sural nerve biopsies revealed a chronic demyelinating and remyelinating process with onion bulb formations in the proband. The proband's father presented with confirmed subclinical myopathy, very mild distal atrophy and proximal hypertrophy of the lower leg muscles, pes cavus, and areflexia. CONCLUSION: This study reports the coexistence of PMP22 duplication and SCN4A mutation. The presenting features in this family suggested that both neuropathy and myopathy were inherited in an autosomal dominant manner. The proband had a typical phenotype of sodium channel myotonia (SCM) and CMT1A. However, his father with the same mutations presented a much milder clinical phenotype. Our study might expand the genetic and phenotypic spectra of neuromuscular disorders with concomitant mutations.
Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Miotonia , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Humanos , Masculino , Proteínas da Mielina , Canal de Sódio Disparado por Voltagem NAV1.4/genética , ProteínasRESUMO
INTRODUCTION/AIMS: Paramyotonia congenita (PMC) is a skeletal muscle sodium channelopathy characterized by paradoxical myotonia, cold sensitivity, and exercise/cold-induced paralysis. Treatment with sodium-channel-blocking antiarrhythmic agents may expose patients to a risk of arrhythmia or may be poorly tolerated or ineffective. In this study we explored the effectiveness of non-antiarrhythmic sodium-channel blockers in two patients with PMC. METHODS: Earlier treatment with mexiletine was discontinued for gastrointestinal side effects in one of the patients and lack of clinical benefit in the other. One patient received lacosamide, ranolazine, and buprenorphine, and the other was given buprenorphine only. Drug efficacy was assessed by clinical scores, timed tests, and by long and short exercise tests. RESULTS: In both patients, buprenorphine improved pain scores by at least 50%, stiffness and weakness levels, and handgrip/eyelid-opening times. The fall in compound muscle action potential (CMAP) during short exercise normalized in both patients at baseline, and improved after cooling. During long exercise, one patient showed an earlier recovery of CMAP, and the other patient had a less severe decrease (<60%). With buprenorphine, the fall in CMAP induced by cooling normalized in one patient (from -72% to -4%) and improved (from -49% to -37%) in the other patient. DISCUSSION: Buprenorphine showed promising results for the treatment of exercise-induced paralysis and cold intolerance in the two patients assessed. The exercise test may be useful for quantitative assessment of treatment response. Further studies on a larger number of patients, under carefully controlled conditions, should be considered to address the effectiveness and long-term tolerability of this therapeutic option.
Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/tratamento farmacológico , Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Teste de Esforço/efeitos dos fármacos , Teste de Esforço/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Resultado do TratamentoRESUMO
INTRODUCTION: Nondystrophic myotonias (NDM) are muscle channelopathies characterized by clinical and electrical myotonia. Little is known about pregnancy in NDM. The aim of this work was to assess pregnancy outcomes in women with NDM. METHODS: In this investigation, we utilized a cross-sectional approach and obtained questionnaire data and medical record review information. Pregnancy outcomes were compared with U.S. national data. RESULTS: Twenty-five women completed the study. There were 63 pregnancies with 53 live births, 8 miscarriages, 4 terminations, and 1 stillbirth. The infertility rate was 28% (above the U.S. average). Fetal distress was reported in 11.7% (U.S. average 3.6%) of the patients. NDM symptoms worsened in 62% of pregnancies. In those who worsened, symptoms usually resolved completely (66%) or partially (32%) after delivery in 2 days to 12 months, the majority (76%) within 3 months. CONCLUSIONS: Most pregnancy outcomes were favorable. NDM worsened in nearly two-thirds of pregnancies, but usually improved shortly after delivery. Incidences of infertility and fetal distress were higher than overall U.S. rates.
Assuntos
Miotonia/fisiopatologia , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/etiologia , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Gravidez , Inquéritos e Questionários , Adulto JovemRESUMO
The inherited myotonias are a complex group of diseases caused by variations in genes that encode or modulate the expression of ion channels that regulate muscle excitability. These variations alter muscle membrane excitability allowing mild depolarization, causing myotonic discharges. There are two groups of inherited myotonia, the dystrophic and the nondystrophic myotonias (NDM). Patients with NDM have a pure muscle phenotype with variations in channel genes expressed in muscle. The dystrophic myotonias are caused by genes that alter splicing leading to more systemic effects with myotonia being one of a number of systemic symptoms. This chapter therefore focuses on the key aspects of the NDMs. The NDMs manifest with varying clinical phenotypes, which change from infancy to adulthood. The pathogenicity of different variants can be determined using heterologous expression systems to understand the alteration in channel properties and predict the likelihood of causing disease. Myotonia itself can be managed by lifestyle modifications. A number of randomized controlled trials demonstrate efficacy of mexiletine and lamotrigine in treating myotonia, but there is an evidence that specific variants may be more or less well-treated by the different agents because of how they alter the channel kinetics. More work is needed to develop more targeted genetic treatments.
Assuntos
Miotonia , Humanos , Miotonia/genética , Miotonia/diagnósticoRESUMO
CASE DESCRIPTION: A 10-month-old castrated male domestic longhair cat was evaluated for increasing frequency of episodic limb rigidity. CLINICAL FINDINGS: The cat presented for falling over and lying recumbent with its limbs in extension for several seconds when startled or excited. Upon examination, the cat had hypertrophied musculature, episodes of facial spasm, and a short-strided, stiff gait. DIAGNOSTICS: Electromyography (EMG) identified spontaneous discharges that waxed and waned in amplitude and frequency, consistent with myotonic discharges. A high impact 8-base pair (bp) deletion across the end of exon 3 and intron 3 of the chloride voltage-gated channel 1 (CLCN1) gene was identified using whole genome sequencing. TREATMENT AND OUTCOME: Phenytoin treatment was initiated at 3 mg/kg po q24 h and resulted in long-term improvement. CLINICAL RELEVANCE: This novel mutation within the CLCN1 gene is a cause of myotonia congenita in cats and we report for the first time its successful treatment.
Assuntos
Doenças do Gato , Miotonia Congênita , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/tratamento farmacológico , Doenças do Gato/genética , Gatos , Canais de Cloreto/genética , Eletromiografia/veterinária , Éxons , Masculino , Mutação , Miotonia Congênita/diagnóstico , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/genética , Miotonia Congênita/veterináriaRESUMO
BACKGROUND: Sodium-channel myotonia (SCM) is a nondystrophic myotonia, characterized by pure myotonia without muscle weakness or paramyotonia. The prevalence of skeletal muscle channelopathies is approximately 1 in 100,000, and the prevalence of SCM is much lower. To our knowledge, this is the first report on anesthetic management of a patient with SCM. CASE PRESENTATION: A 23-year-old woman with congenital nasal dysplasia and SCM was scheduled to undergo rhinoplasty with autologous costal cartilage. Total intravenous anesthesia without muscle relaxants was administered followed by continuous intercostal nerve block. Although transient elevation of potassium level in the blood was observed during surgery, the patient did not show exacerbation of myotonic or paralytic symptoms in the postoperative period. CONCLUSION: Total intravenous anesthesia and peripheral nerve block can be administered safely to a patient with SCM. However, careful monitoring of the symptoms and electrolytes is recommended.
RESUMO
BACKGROUND: The nondystrophic skeletal muscle channelopathies are a group of disorders caused by mutations of various voltage-gated ion channel genes, including nondystrophic myotonia and periodic paralysis. METHODS: We identified patients with a diagnosis of muscle channelopathy from our neuromuscular database in a tertiary care pediatric center from 2005 to 2015. We then performed a retrospective review of their medical records for demographic characteristics, clinical features, investigations, treatment, and follow-up. RESULTS: Thirty-three patients were identified. Seventeen had nondystrophic myotonia. Seven of them had chloride channelopathy (four Becker disease and three Thomsen disease). Warm-up phenomenon and muscle hypertrophy were common clinical manifestations in this subgroup. Ten patients had sodium channelopathy (four paramyotonia congenita and six other sodium channel myotonia). Stiffness of the facial muscles was an important presenting symptom, and eyelid myotonia was a common clinical finding in this subgroup. The majority of these patients had electrical myotonia. Mexiletine was effective in controlling the symptoms in patients who had received treatment. Sixteen children had periodic paralysis (four hyperkalemic periodic paralysis, eight hypokalemic periodic paralysis, and four Andersen-Tawil syndrome). Acetazolamide was commonly used to prevent paralytic attacks and was found to be effective. CONCLUSIONS: Nondystrophic muscle channelopathies present with diverse clinical manifestations (myotonia, muscle hypertrophy, proximal weakness, swallowing difficulties, and periodic paralysis). Cardiac arrhythmias are potentially life threatening in Andersen-Tawil syndrome. Timely identification of these disorders is helpful for effective symptomatic management and genetic counseling.
Assuntos
Canalopatias/complicações , Canalopatias/patologia , Músculo Esquelético/fisiopatologia , Doenças Neuromusculares/etiologia , Síndrome de Andersen/etiologia , Síndrome de Andersen/genética , Canalopatias/genética , Criança , Pré-Escolar , Eletromiografia , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Doenças Neuromusculares/genética , Paralisia Periódica Hiperpotassêmica/etiologia , Paralisia Periódica Hiperpotassêmica/genética , Estudos RetrospectivosRESUMO
BACKGROUND: Non-dystrophic myotonias are a heterogeneous set of skeletal, muscular channelopathies, which have been associated with point mutations within sodium channel α-subunit (SCN4A) gene. Because exons 22 and 24 of SCN4A gene are recognized as hot spots for this disease, the purpose of the study is to identify mutation in exons 22 and 24 of SCN4A gene in Iranian non-dystrophic myotonias patients. METHODS: In this study, 28 Iranian patients with non-dystrophic myotonia analyzed for the mutation scanning in exons 22 and 24 of SCN4A gene by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and sequencing. RESULTS: We found 29073G>C substitution in SCN4A gene in one case and 31506A>G substitution in seven cases. The 29073G>C substitution causes a missense mutation G1306A, located in the conserved cytoplasmic loop connecting repeat III and IV of the SCN4A channel but, 31506A>G substitution do not alter amino acid in SCN4A protein. CONCLUSION: G1306A residue is located in functionally important protein region. In "hinged-lid model" for Na(+) channel inactivation in which glycines(1306) act as the hinge of the lid occluding the channel pore. Mutation in this region slowed fast inactivation. Therefore, it might be a pathogenic mutation. The causal relationship of this mutation with the disease is an object for further discussion.
RESUMO
Skeletal muscle channelopathies are rare heterogeneous diseases with marked genotypic and phenotypic variability. Despite advances in understanding of the molecular pathology of these disorders, the diverse phenotypic manifestations remain a challenge in diagnosis and therapeutics. These disorders can cause lifetime disability and affect quality of life. There is no treatment of these disorders approved by the US Food and Drug Administration at this time. Recognition and treatment of symptoms might reduce morbidity and improve quality of life. This article summarizes the clinical manifestations, diagnostic studies, pathophysiology, and treatment options in nondystrophic myotonia, congenital myasthenic syndrome, and periodic paralyses.
Assuntos
Canalopatias/diagnóstico , Canais Iônicos/genética , Canalopatias/genética , Canalopatias/fisiopatologia , Canalopatias/terapia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Miotonia/diagnóstico , Miotonia/genética , Miotonia/fisiopatologia , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/genética , Transtornos Miotônicos/fisiopatologiaRESUMO
Nondystrophic myotonias are characterized by muscle stiffness triggered by voluntary movement. They are caused by mutations in either the CLCN1 gene in myotonia congenita or in the SCN4A gene in paramyotonia congenita and sodium channel myotonias. Clinical and electrophysiological phenotypes of these disorders have been well described. No concomitant mutations in both genes have been reported yet. We report five patients from three families showing myotonia with both chloride and sodium channel mutations. Their clinical and electrophysiological phenotypes did not fit with the phenotype known to be associated with the mutation initially found in SCN4A gene, which led us to screen and find an additional mutation in CLCN1 gene. Our electrophysiological and clinical observations suggest that heterozygous CLCN1 mutations can modify the clinical and electrophysiological expression of SCN4A mutation.