Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Emerg Infect Dis ; 26(12): 3081-3083, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219797

RESUMO

In 2018, a strain of epizootic hemorrhagic disease virus (EHDV), named YNDH/V079/2018, was isolated from a sentinel calf in Mangshi County, Yunnan Province, China. Nucleotide sequencing and neutralization tests indicated that the virus belongs to a novel serotype of EHDV that had not been reported previously.


Assuntos
Doenças dos Bovinos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , China/epidemiologia , Vírus da Doença Hemorrágica Epizoótica/genética , Filogenia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Sorogrupo
2.
J Clin Microbiol ; 56(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720431

RESUMO

A newly recognized pneumococcal serotype, 35D, which differs from the 35B polysaccharide in structure and serology by not binding to factor serum 35a, was recently reported. The genetic basis for this distinctive serology is due to the presence of an inactivating mutation in wciG, which encodes an O-acetyltransferase responsible for O-acetylation of a galactofuranose. Here, we assessed the genomic data of a worldwide pneumococcal collection to identify serotype 35D isolates and understand their geographical distribution, genetic background, and invasiveness potential. Of 21,980 pneumococcal isolates, 444 were originally typed as serotype 35B by PneumoCaT. Analysis of the wciG gene revealed 23 isolates from carriage (n = 4) and disease (n = 19) with partial or complete loss-of-function mutations, including mutations resulting in premature stop codons (n = 22) and an in-frame mutation (n = 1). These were selected for further analysis. The putative 35D isolates were geographically widespread, and 65.2% (15/23) of them was recovered after the introduction of pneumococcal conjugate vaccine 13 (PCV13). Compared with serotype 35B isolates, putative serotype 35D isolates have higher invasive disease potentials based on odds ratios (OR) (11.58; 95% confidence interval[CI], 1.42 to 94.19 versus 0.61; 95% CI, 0.40 to 0.92) and a higher prevalence of macrolide resistance mediated by mefA (26.1% versus 7.6%; P = 0.009). Using the Quellung reaction, 50% (10/20) of viable isolates were identified as serotype 35D, 25% (5/20) as serotype 35B, and 25% (5/20) as a mixture of 35B/35D. The discrepancy between phenotype and genotype requires further investigation. These findings illustrated a global distribution of an invasive serotype, 35D, among young children post-PCV13 introduction and underlined the invasive potential conferred by the loss of O-acetylation in the pneumococcal capsule.


Assuntos
Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/patogenicidade , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Variação Genética , Genoma Bacteriano/genética , Genótipo , Mutação , Filogenia , Infecções Pneumocócicas/prevenção & controle , Prevalência , Análise de Sequência de DNA , Sorogrupo , Streptococcus pneumoniae/genética
3.
Microb Pathog ; 122: 39-45, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29859291

RESUMO

Streptococcus agalactiae (S. agalactiae, GBS) infection has caused significant economic loss in the tilapia aquaculture, which is one of the most important commercial fish worldwide. Among the 10 serotypes of GBS, serotypes Ia, Ib, II and III were epidemic in tilapia while serotype IX has never been found in tilapia before. In this study, 80 strains isolated from moribund tilapia in China were identified as GBS. All the isolates have been classified as serotype III or serotype IX of GBS. Unexpectedly, the serotype IX has never been reported in fish, but it was epidemic in mammals. Antimicrobial resistance results showed that serotype IX but not III was resistant to streptomycin and erythromycin. Artificial infection results showed that both serotypes could cause serious pathological injuries in the infected tissues of tilapia. Furthermore, serotype IX instead of serotype III, mainly infected the brain of tilapia. The results will shed a new light on the epidemic and pathogenicity of GBS, and will pave a new way for the prevention of Streptococcosis in tilapia.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/efeitos dos fármacos , Tilápia/microbiologia , Animais , Encéfalo/microbiologia , Encéfalo/patologia , China , Eritromicina/farmacologia , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/classificação , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/patogenicidade , Estreptomicina/farmacologia
4.
Viruses ; 16(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38257756

RESUMO

Adeno-associated virus (AAV) vectors are among the most widely used delivery vehicles for in vivo gene therapy as they mediate robust and sustained transgene expression with limited toxicity. However, a significant impediment to the broad clinical success of AAV-based therapies is the widespread presence of pre-existing humoral immunity to AAVs in the human population. This immunity arises from the circulation of non-pathogenic endemic human AAV serotypes. One possible solution is to use non-human AAV capsids to pseudotype transgene-containing AAV vector genomes of interest. Due to the low probability of human exposure to animal AAVs, pre-existing immunity to animal-derived AAV capsids should be low. Here, we characterize two novel AAV capsid sequences: one derived from porcine colon tissue and the other from a caprine adenovirus stock. Both AAV capsids proved to be effective transducers of HeLa and HEK293T cells in vitro. In vivo, both capsids were able to transduce the murine nose, lung, and liver after either intranasal or intraperitoneal administration. In addition, we demonstrate that the porcine AAV capsid likely arose from multiple recombination events involving human- and animal-derived AAV sequences. We hypothesize that recurrent recombination events with similar and distantly related AAV sequences represent an effective mechanism for enhancing the fitness of wildtype AAV populations.


Assuntos
Capsídeo , Cabras , Camundongos , Animais , Bovinos , Suínos , Humanos , Células HEK293 , Terapia Genética , Proteínas do Capsídeo/genética
5.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919269

RESUMO

We identified a putative novel atypical BTV serotype '36' in Swiss goat flocks. In the initial flock clinical signs consisting of multifocal purulent dermatitis, facial oedema and fever were observed. Following BTV detection by RT-qPCR, serotyping identified BTV-25 and also a putative novel BTV serotype in several of the affected goats. We successfully propagated the so-called "BTV-36-CH2019" strain in cell culture, developed a specific RT-qPCR targeting Segment 2, and generated the full genome by high-throughput sequencing. Furthermore, we experimentally infected goats with BTV-36-CH2019. Regularly, EDTA blood, serum and diverse swab samples were collected. Throughout the experiment, neither fever nor clinical disease was observed in any of the inoculated goats. Four goats developed BTV viremia, whereas one inoculated goat and the two contact animals remained negative. No viral RNA was detected in the swab samples collected from nose, mouth, eye, and rectum, and thus the experimental infection of goats using this novel BTV serotype delivered no indications for any clinical symptoms or vector-free virus transmission pathways. The subclinical infection of the four goats is in accordance with the reports for other atypical BTVs. However, the clinical signs of the initial goat flock did most likely not result from infection with the novel BTV-36-CH0219.


Assuntos
Vírus Bluetongue/classificação , Bluetongue/epidemiologia , Bluetongue/virologia , Ruminantes/virologia , Animais , Bluetongue/diagnóstico , Vírus Bluetongue/genética , Feminino , Doenças das Cabras/diagnóstico , Doenças das Cabras/epidemiologia , Doenças das Cabras/virologia , Cabras/virologia , Masculino , Filogenia , RNA Viral , Sorogrupo , Suíça/epidemiologia
6.
Infect Genet Evol ; 59: 63-71, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29386141

RESUMO

Bluetongue (BT), is one of the OIE-listed major diseases of ruminants. Following the official report of BT virus serotype 3 (BTV-3) in a sheep in Cap Bon (Tunisia), blood and serum samples of ruminants were collected from some areas of Tunisia to further investigate the presence of this virus in the country. A quantitative real time RT-PCR has been first developed for the detection and quantitation of BTV-3 RNA from field specimens. Out of 62 collected blood samples, 23 were shown to be positive for BTV-3 RNA. Isolation on cell cultures was also possible from six samples. Genome sequencing revealed the circulation of two unrelated western strains of BTV-3, one circulating in Cap Bon and neighboring areas, and the other circulating nearby the border with Libya. The presence of a putative novel BTV serotype (BTV-Y TUN2017) in sheep introduced from Libya to Tunisia, genomically related to the BTV strain contaminating a commercially-available sheep pox vaccine and to BTV-26, has been also demonstrated. This finding highlights the pressing need for a prompt production and release of a novel inactivated BTV-3 vaccine to be used in case of emergence or proactively in the areas of Southern Europe at major risk of BTV introduction. The assessment of a novel vaccine will certainly exalt the role and importance of surveillance activities and collaboration with Northern African countries.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Bluetongue/virologia , Infecções por Poxviridae , Vacinas Virais/genética , Animais , Feminino , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/virologia , RNA Viral/sangue , RNA Viral/genética , Sorogrupo , Ovinos/virologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/virologia , Tunísia
7.
Front Microbiol ; 8: 786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529504

RESUMO

In January 2014, a viral hemagglutinating agent named UPO216 was isolated from fecal droppings of wild birds at the UPO wetland in South Korea during an avian influenza surveillance program. Electron microscopy identified the UPO216 virus as an avian paramyxovirus (APMV). Pathogenicity tests and molecular pathotyping revealed that the virus was avirulent in chickens. The UPO216 virus was assigned to a serological group antigenically distinct from known serotypes of APMV (-1, -2, -3, -4, -6, -7, -8, and -9) by hemagglutination inhibition test, despite showing weak cross-reactivity with APMV-1 and APMV-9. The UPO216 virus RNA genome is 15,180 nucleotides (nts) in length, encodes 3'-N-P(V/W)-M-F-HN-L-5' in that order, and shows unique genetic characteristics in terms of genomic composition and evolutionary divergence (0.43 or greater from known serotypes of APMV). Phylogenetic analysis revealed that the UPO216 occupies a branch separate from APMV-1, -9, -12, and -13. Serologic surveillance of wild birds (n = 880; 15 species, five Orders) detected UPO216-reactive antibodies in 4% (20/494) of serum samples taken from five species of wild duck belonging to the Order Anseriformes. In particular, UPO216-specific antibodies showing no cross-reaction with other serotypes of APMV were detected in four species: Eurasian teal (1/36), European wigeon (1/73), mallard (4/139), and Spot-Billed duck (1/137). These results indicate that the UPO216 virus has antigenically and genetically unique characteristics distinct from known serotypes of APMV and likely has been circulating widely in wild duck species of the Order Anseriformes. Thus, we propose the UPO216 isolate as a prototype strain of a novel APMV serotype (putative APMV-15).

8.
Virus Res ; 228: 46-57, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27884627

RESUMO

A hemagglutinating virus isolate designated 11OG0352, was obtained from a duck fecal sample. Genetic and virological analyses indicated that it might represent a novel serotype of avian paramyxovirus (APMV). Electron micrographs showed that the morphology of the virus particle was similar to that of APMV. The complete genome of this virus comprised 15,444 nucleotides complying with the paramyxovirus "rule of six" and contains six open reading frames (3'-N-P-M-F-HN-L-5'). The phylogenetic analysis of the whole genome revealed that the virus was a member of the genus Avulavirus, but that it was distinct from APMV-1 to APMV-13. Although the F-protein cleavage site was TREGK↓L, which resembles a lentogenic strain of APMV-1, the K residue at position -1 of the cleavage site was first discovered in APMV members. The phosphoprotein gene of isolate 11OG0352 contains a putative RNA editing site, 3'-AUUUUCCC-5' (negative sense) which sequence differs from that of other APMVs. The intracerebral pathogenicity index test did not detect virulence in infected chicks. In hemagglutination inhibition (HI) tests, an antiserum against this virus did not detectably react with other APMVs (serotypes 1-4, 6-9) except for low reciprocal cross-reactivity with APMV-6. We designated this isolate, as APMV-14/duck/Japan/11OG0352/2011 and propose that it is a novel APMV serotype. The HI test may not be widely applicable for the classification of a new serotype because of the limited availability of reference antisera against all serotypes and cross-reactivity data. The nucleotide sequence identities of the whole genome of 11OG0352 and other APMVs ranged from 46.3% to 56.1%. Such comparison may provide a useful tool for classifying new APMV isolates. However, the nucleotide sequence identity between APMV-12 and APMV-13 was higher (64%), which was nearly identical to the lowest nucleotide identity (67%) reported in subgroups within the serotype. Therefore, consensus criteria for using whole genome analysis should be established.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/classificação , Avulavirus/genética , Fezes/virologia , Doenças das Aves Domésticas/virologia , Animais , Avulavirus/isolamento & purificação , Avulavirus/ultraestrutura , Sequência de Bases , Linhagem Celular , Células Cultivadas , Patos , Edição de Genes , Ordem dos Genes , Genoma Viral , Japão , Fases de Leitura Aberta , Filogenia , Sorogrupo , Proteínas Virais/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA