Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(11): 1284, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814090

RESUMO

Urban climate analysis usually uses data from weather stations, traverse, or satellite images. However, this methodology also has its limitations, since the series of data for climate monitoring can be scarce. Another option that has been earning attention in recent years is numeric models, which perform simulations in urban climate. Obtaining climate data is extremely important for climatology, as well as for related areas, such as urban planning, which uses this data to know how to best order the territory according to climate conditions and their projections. Our study aimed to carry out a literature review regarding urban heat island analysis methodologies, with emphasis on the use of models. We evaluated over 200 scientific documents and we used 68 in the results of this work, reporting different types of models. The results indicated that most of the works on urban climate use a more traditional methodological approach, with fieldwork, whereas studies with models have been carried out in a specific way, especially in cities in the northern hemisphere. Among the articles evaluated, the majority were published in Elsevier publisher journals, which have a more interdisciplinary approach. The most studied models were ENVI-met, SOLWEIG, PALM-4U, RayMan, and TEB. In this way, this work pointed out, unlike other works of review in urban climate methodologies, the difficulty in obtaining field data, emphasizing their importance, with regard to studies of urban heat islands and urban planning. We also conclude that the progress and development of the state of the art in numerical models are conditioned to scientific investment in the area.


Assuntos
Monitoramento Ambiental , Temperatura Alta , Cidades , Monitoramento Ambiental/métodos , Clima , Tempo (Meteorologia)
2.
Sensors (Basel) ; 21(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372305

RESUMO

Flexible pressure sensors with piezoresistive polymer composites can be integrated into elastomers to measure pressure changes in sealings, preemptively indicating a replacement is needed before any damage or leakage occurs. Integrating small percentages of high aspect ratio multi-walled carbon nanotubes (MWCNTs) into polymers does not significantly change its mechanical properties but highly affects its electrical properties. This research shows a pressure sensor based on homogeneous dispersed MWCNTs in polydimethylsiloxane with a high sensitivity region (0.13% kPa-1, 0-200 kPa) and sensitive up to 500 kPa. A new 3D-printed mold is developed to directly deposit the conductive polymer on the electrode structures, enabling sensor thicknesses as small as 100 µm.


Assuntos
Nanotubos de Carbono , Dimetilpolisiloxanos , Condutividade Elétrica , Eletrodos , Polímeros
3.
Sensors (Basel) ; 21(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960354

RESUMO

Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been studied in recent years. Realistic numerical and physical models of the breast are needed for simulation and experimental testing of MWI prototypes. We aim to provide the scientific community with an online repository of multiple accurate realistic breast tissue models derived from Magnetic Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for 3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which includes image registration, bias field correction, data normalisation, background subtraction, and median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies have been made available to the research community. These are suitable for microwave diagnosis, i.e., imaging and classification, and can be easily adapted to other imaging modalities.


Assuntos
Neoplasias da Mama , Imageamento de Micro-Ondas , Algoritmos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética
4.
J Environ Manage ; 293: 112878, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091140

RESUMO

This paper presents a novel set of water quality indexes to identify the area potentially affected by point sources of bacterial pollution in coastal bathing waters. The indexes, developed in the framework of the CADEAU service, are evaluated on the results of a modelling system based on the integration of a high-resolution ocean model, remote sensing observations and in situ monitoring data for the northern Adriatic Sea. In particular, the system is a downscaling of the Mediterranean Copernicus Marine Environment Monitoring Service and exploits data produced within the Bathing Waters Directive, the Water Framework Directive and the Urban Waste Water Treatment Directive to create added value products. The aim of the proposed indexes is to support the identification of areas of influence for bathing waters by identifying the potential threat from point sources of bacterial pollution, both in standard conditions and peculiar events such as a total bypass of wastewater treatment plants. The results for the Chioggia Municipality case study show the potential of the indexes to significantly improve the geographical identification and quantitative evaluation of the impacts of bacterial pollution sources on bathing waters, facilitating the design of mitigation measures. The proposed methodology represents a new management approach to support local authorities in defining the area of influence within the water bathing profile through the proper characterization of the point sources of bacterial pollution.


Assuntos
Praias , Microbiologia da Água , Cidades , Monitoramento Ambiental , Qualidade da Água
5.
Sensors (Basel) ; 20(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878093

RESUMO

Techniques based on ultrasound in nondestructive testing and medical imaging analyze the response of the source frequencies (linear theory) or the second-order frequencies such as higher harmonics, difference and sum frequencies (nonlinear theory). The low attenuation and high directivity of the difference-frequency component generated nonlinearly by parametric arrays are useful. Higher harmonics created directly from a single-frequency source and the sum-frequency component generated nonlinearly by parametric arrays are attractive because of their high spatial resolution and accuracy. The nonlinear response of bubbly liquids can be strong even at relatively low acoustic pressure amplitudes. Thus, these nonlinear frequencies can be generated easily in these media. Since the experimental study of such nonlinear waves in stable bubbly liquids is a very difficult task, in this work we use a numerical model developed previously to describe the nonlinear propagation of ultrasound interacting with nonlinearly oscillating bubbles in a liquid. This numerical model solves a differential system coupling a Rayleigh-Plesset equation and the wave equation. This paper performs an analysis of the generation of the sum-frequency component by nonlinear mixing of two signals of lower frequencies. It shows that the amplitude of this component can be maximized by taking into account the nonlinear resonance of the system. This effect is due to the softening of the medium when pressure amplitudes rise.

6.
Heliyon ; 10(1): e23237, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163127

RESUMO

The practical application of local smoothing and wavelet analysis methods for studying the spectral composition and coherent relationships of local average annual surface air temperatures with solar activity and the displacement of the Earth's North Pole is presented. A preliminary analysis of local time series of surface temperatures revealed the presence of emissions and their localization. It is shown that to eliminate the influence of outliers (short-term events) on the reliability of identifying a long-term nonlinear trend, the wavelet decomposition method, which filters high frequencies, is most suitable. Functional approximation models are constructed and compared at different levels of wavelet decomposition of the data. Time or scale smoothing is used to improve the reliability of the wavelet spectrum. Based on data on average annual surface air temperatures in Yalta (44.48°, 34.17°, = 72.0 m) for the time interval from 1869 to 2022, functional models of long-term trends were built and used to obtain short-term forecasts. Information about the linear relationship of events in the compared time series is obtained and discussed in the analysis of wavelet cross-correlation, wavelet coherence and phase coherence. Local similarities were discovered between data on surface air temperature and solar activity data (Wolf numbers) for a period of ∼(30-70) years, as well as oscillations with period of 11 years, manifested in the constancy of the phase difference and an increase in the modulus of wavelet coherence power over time. Localized similarities were also found in data on surface air temperature in Yalta and in data on displacements of the Earth's mean pole relative to the conventional beginning of EOP (IERS) CO1 in the interval of periods âˆ¼ (30-70) years.

7.
Sci Total Environ ; 921: 171162, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401736

RESUMO

Nonindigenous marine species are impacting the integrity of marine ecosystems worldwide. The invasion rate is increasing, and vessel traffic, the most significant human-assisted transport pathway for marine organisms, is predicted to double by 2050. The ability to predict the transfer of marine species by international and domestic maritime traffic is needed to develop cost-effective proactive and reactive interventions that minimise introduction, establishment and spread of invasive species. However, despite several decades of research into vessel-mediated species transfers, some important knowledge gaps remain, leading to significant uncertainty in model predictions, often limiting their use in decision making and management planning. In this review, we discuss the sequential ecological process underlying human-assisted biological invasions and adapt it in a marine context. This process includes five successive stages: entrainment, transport, introduction, establishment, and the subsequent spread. We describe the factors that influence an organism's progression through these stages in the context of maritime vessel movements and identify key knowledge gaps that limit our ability to quantify the rate at which organisms successfully pass through these stages. We then highlight research priorities that will address these knowledge gaps and improve our capability to manage biosecurity risks at local, national and international scales. We identified four major data and knowledge gaps: (1) quantitative rates of entrainment of organisms by vessels; (2) the movement patterns of vessel types lacking maritime location devices; (3) quantifying the release (introduction) of organisms as a function of vessel behaviour (e.g. time spent at port); and (4) the influence of a species' life history on establishment success, for a given magnitude of propagule pressure. We discuss these four research priorities and how they can be addressed in collaboration with industry partners and stakeholders to improve our ability to predict and manage vessel-mediated biosecurity risks over the coming decades.


Assuntos
Ecossistema , Espécies Introduzidas , Humanos , Organismos Aquáticos , Indústrias , Incerteza
8.
Comput Biol Med ; 170: 108019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325217

RESUMO

BACKGROUND: Disuse is a typical phenotype of osteoporosis, but the underlying mechanism has yet to be identified in elderly patients. Disc collapse and intervertebral disc (IVD) fibrosis are two main pathological changes in IVD degeneration (IDD) progression, given that these changes affect load transmission patterns, which may lead to disuse osteoporosis of vertebral bodies and zygapophyseal joint (ZJ) osteoarthritis (ZJOA) biomechanically. METHODS: Clinical data from 59 patients were collected retrospectively. Patient vertebral bony density, ZJOA grade, and disc collapse status were judged via CT. The IVD fibrosis grade was determined based on the FA measurements. Regression analyses identified potential independent risk factors for osteoporosis and ZJOA. L4-L5 numerical models with and without disc collapse and IVD fibrosis were constructed; stress distributions on the bony endplate (BEP) and zygapophyseal joint (ZJ) cartilages were computed in models with and without disc collapse and IVD fibrosis. RESULTS: A significantly lower disc height ratio and significantly greater FA were recorded in patients with ZJOA. A significant correlation was observed between lower HU values and two parameters related to IDD progression. These factors were also proven to be independent risk factors for both osteoporosis and ZJOA. Correspondingly, compared to the intact model without IDD. Lower stress on vertebral bodies and greater stress on ZJOA can be simultaneously recorded in models of disc collapse and IVD fibrosis. CONCLUSIONS: IVD fibrosis and disc collapse simultaneously aggravate vertebral body disuse osteoporosis and ZJOA by posteriorly shifting the load transmission pattern.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Osteoartrite , Osteoporose , Articulação Zigapofisária , Humanos , Idoso , Corpo Vertebral/patologia , Estudos Retrospectivos , Articulação Zigapofisária/diagnóstico por imagem , Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Osteoartrite/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Fibrose , Vértebras Lombares/patologia
9.
Comput Methods Programs Biomed ; 246: 108056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330768

RESUMO

BACKGROUND: Complications of atrial fibrillation (AF) include ischemic events originating within the left atrial appendage (LAA), a protrusion of the left atrium with variable morphological characteristics. The role of the patient specific morphology and pathological haemodynamics on the risk of ischemia remains unclear. METHODS: This work performs a comparative assessment of the hemodynamic parameters among patient-specific LAA morphologies through fluid-structure interaction computational analyses. Three LAA models per each of the four commons patient-specific morphological families (chicken wing, cactus, windsock, and cauliflower) were analysed. Mechanical properties of the tissue were based on experimental uniaxial tests on a young pig's heart. Boundary conditions were imposed based on clinical assessments of filling and emptying volumes. Sinus rhythm and atrial fibrillation operative conditions were simulated and analysed. RESULTS: For each model, the effect of morphological and functional parameters, such as the number of trabeculae and LAA stroke volume, over the hemodynamics established into the appendage was analysed. Comparison between results obtained in healthy and diseased conditions suggested the introduction of a new parameter to quantify the risk of thrombosis, here called blood stasis factor (BSF). This is defined as the LAA surface area which permanently experiences levels of shear strain rate inferior to a threshold value, set to 5 s-1 (BSF5). CONCLUSIONS: This work suggests that the current morphological classification is unsuitable to evaluate the probability of thrombus formation. However, hemodynamic parameters easy to determine from clinical examinations, such as normalised stroke volume, LAA orifice flow rate and presence of extensive trabeculations can identify departures from healthy hemodynamics in AF and support a more systematic stratification of the thromboembolic risk.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Humanos , Apêndice Atrial/patologia , Hemodinâmica
10.
Dent Mater ; 40(10): 1677-1684, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097503

RESUMO

OBJECTIVE: To assess the prediction accuracy of recent optical and numerical models for the spectral reflectance and color of monolithic samples of dental materials with different thicknesses. METHODS: Samples of dental resin composites of Aura Easy Flow (Ae1, Ae3 and Ae4 shades) and Estelite Universal Flow Super Low (A1, A2, A3, A3.5, A4 and A5 shades) with thicknesses between 0.3 and 1.8 mm, as well as Estelite Universal Flow Medium (A2, A3, OA2 and OA3 shades) with thicknesses between 0.4 and 2.0 mm, were used. Spectral reflectance and transmittance factors of all samples were measured using a X-Rite Color i7 spectrophotometer. Four analytical optical models (2 two-flux models and 2 four-flux models) and two numerical models (PCA-based and L*a*b*-based) were implemented to predict spectral reflectance of all samples and then convert them into CIE-L*a*b* color coordinates (D65 illuminant, 2°Observer). The CIEDE2000 total color difference formula (ΔE00) between predicted and measured colors, and the corresponding 50:50% acceptability and perceptibility thresholds (AT00 and PT00) were used for performance assessment. RESULTS: The best performing optical model was the four-flux model RTE-4F-RT, with an average ΔE00 = 0.72 over all samples, 94.87% of the differences below AT00 and 65.38% below PT00. The best performing numerical model was L*a*b*-PCHIP (interpolation mode), with an average ΔE00 = 0.48, and 100% and 79.69% of the differences below AT00 and PT00, respectively. SIGNIFICANCE: Both optical and numerical models offer comparable color prediction accuracy, offering flexibility in model choice. These results help guide decision-making on prediction methods by clarifying their strengths and limitations.


Assuntos
Cor , Resinas Compostas , Teste de Materiais , Espectrofotometria , Resinas Compostas/química , Materiais Dentários/química
11.
Heliyon ; 10(5): e26951, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495194

RESUMO

Steel cross-sections with thin walls are vulnerable to fire-induced buckling instability, which reduces their load-bearing capacity. Eurocode 3 design provisions have been found inadequate, leading to alternative methods such as effective design strategies and advanced structural models built mostly with shell FE, which can be complex. For Class 4 steel beam-columns subjected to fire conditions, beam-type modelling to predict the Flexural-Torsional Buckling (FTB) strength has been proposed as an alternative approach, but it has not yielded satisfactory results for large compressive load eccentricities. This paper presents two new low computational cost modelling strategies based on Timoshenko's beam FE to address this issue: the Single beam-column Model (SbcM) and the Cruciform beam-column Model (CbcM). The first consists of a single line of beam FE, while the second uses a grid of beam FE for more flexibility. Both strategies effectively simulate the FTB behaviour in Class 4 steel beam-column during a fire, offering quicker computations compared to shell models. Still, the single-line model is favoured for its simplicity, making it more efficient in analysing complex fire engineering problems.

12.
Sci Total Environ ; 887: 164008, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37172855

RESUMO

Microplastics (MPs), a new class of emerging pollutants, have attracted exponentially increased attention due to the adverse ecological impacts on biota, not only by themselves but also by the combined corrosive substances. However, the occurrence mechanisms, numerical models and influencing factors of MPs adsorbing organic pollutants (OPs) show a significant variation with literatures. Therefore, this review is focused on the adsorption of OPs on MPs, including mechanisms, numerical models, and influencing factors, to obtain a comprehensive understanding. Research shows that MPs with strong hydrophobicity have high adsorption capacity for hydrophobic OPs. Hydrophobic distribution and surface adsorption are considered to be the main mechanisms by which MPs adsorb OPs. The available literature suggests that the pseudo-second-order model describes the adsorption kinetics of OPs on MPs better than the pseudo-first-order model, while the choice of Freundlich or Langmuir isotherm model depends mainly on the specific environmental conditions. Moreover, the characteristics of MPs (composition, particle size, aging, etc.), the nature of OPs (concentration, polarity, hydrophilicity, etc.), the environmental conditions (temperature, salinity, pH, ionic strength, etc.), and the substances co-existing in the environment (e.g., DOM and surfactants) are all important factors affecting the adsorption behavior of MPs for OPs. Environmental conditions can also indirectly affect the adsorption of hydrophilic OPs adsorbed on MPs by causing changes in the surface properties of MPs. Based on the current knowledge, the perspective shortening the knowledge gap is also suggested.

13.
Heliyon ; 9(2): e12999, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793961

RESUMO

The sum of all currently known facts confirms the existence of a global warming process. The development models of this process are statistical in nature and often do not take into account the specifics of local conditions. This fact confirms our analysis of measurements of the average annual surface air temperature during the period 1980-2019 in the city of Krasnodar (Russia). We used data from ground based (World Data Center) and space based (POWER project) measurements. A comparison of the data showed that the discrepancies in ground and space based measurements of surface air temperatures until 1990 do not exceed the data error ( s = ± 0.7 °C). After 1990, the most significant short-term discrepancies were observed in 2014 (-1.12°Ð¡) and 2016 (1.33°Ð¡). An analysis of the forecast model of the Earth's surface air average annual temperature for 1918-2020 indicates a gradual decrease in the average annual temperature even in the presence of short-term impulses of its increase. The rate of decrease in the average annual temperature from ground based observations is slightly higher than from space based observations, which is probably due to a more complete consideration of local conditions in ground based observations.

14.
Materials (Basel) ; 16(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048869

RESUMO

This paper focuses on the use of numerical tools, as a finite elements method, to conceive fiber reinforced concrete (FRC) eco-constructions. It highlights the fact that these are the most suitable tools (much more than the Eurocodes, for example) to predict the cracking process of FRC constructions at their service limit state and, therefore, to predict their durability. Following a critical analysis of the existing finite element models for FRC cracking, it describes in more detail a probabilistic one. This model appears very suitable for providing precise information about crack openings that are inferior or equal to 300 microns. Finally, it presents an example of the use of this numerical model to optimize an FRC track slab in order to reduce its carbon footprint. This study, although partial and incomplete, shows that the best way to reduce the carbon footprint of this type of construction is to reduce its thickness.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36901254

RESUMO

Design rainfall is the basis for deriving design floods in areas where rainfall data are lacking and has a significant impact on the construction of water engineering facilities and municipal engineering designs. The Chicago rainfall pattern method has great applicability for urban short-duration design rainfall. In order to analyze the influence of design storm rainfall patterns on urban flooding, numerical models of hydrological and hydrodynamic processes were applied to simulate design rainfall with different recurrence periods and different rain peaks and were also used to compare and analyze the total amount of water accumulation and inundation extent by taking the central city of Zhoukou as an example. The results show that when the design rainfall recurrence period is less than 20 years, the total volume and inundation extent of waterlogging in design rainfall with a smaller peak ratio is larger. When the return period is greater than 20 years, the pattern is reversed. However, as the return period grows, the difference in peak inundation volume due to different peak rainfall amounts decreases. This study has certain guiding significance for urban flood forecasting and early warning efforts.


Assuntos
Inundações , Modelos Teóricos , Chicago , Urbanização , Chuva , Cidades
16.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837376

RESUMO

Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.

17.
Sci Total Environ ; 877: 162857, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931511

RESUMO

For the coastal aquifers, recent research have shown that the tidal has a significant effect on saltwater intrusion in the near-shore aquifer. However, it is currently unclear how the tidal river contributes to the groundwater flow and salinity distribution in the upstream aquifer of the estuary. This study examined the effects of a tidal river on the dynamic characteristics of groundwater flow and salt transport in a tidal river-coastal aquifer system using field monitoring data and numerical simulations. It was found that changes in tidal-river level led to the reversal of groundwater flow. For a tidal cycle, the maximum area of seawater intrusion is about 41.16 km2 at the end of the high tide stage. Then the area gradually decreased to 39.02 km2 at the end of the low tide stage. More than 2 km2 area variation can be observed in a tidal cycle. Compared to the low tide stage, the area of SWI increased by 5 % at high tide stage. The SWI region was also spreading landward from the tidal river. In addition, we quantified the water exchange and salt flux between the tidal river and aquifer. When the tidal fell below the level of the riverbed, the water exchange rate was stabilized at about -1.6 m/h. The negative value indicated that the river was recharged by the groundwater. With the increasing of tidal water level, the water exchange rate gradually changes from negative to positive and reached the maximum value of 3.2 m/h at the beginning of the falling tide stage. The presence of a physical river dam can amplify the difference in water level between high and low tides, thereby enhancing the influence of a tidal river on water exchange and salt flux. The findings lay the foundation for gaining a comprehensive understanding of the tidal river on groundwater flow and salt transport in upstream aquifers.

18.
R Soc Open Sci ; 10(7): 230142, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476520

RESUMO

Increased cardiac stiffness hinders proper left ventricular (LV) expansion, resulting in decreased volume and diastolic dysfunction. LV expanders are spring-like devices designed to improve diastolic function by facilitating mechanical outward expansion. Implantations in animals and humans have shown promising results, yet further evaluation is needed to assess a range of functions and the risk of use. In this computational study, the effectiveness and potential use of a generic LV expander were assessed by using previously generated finite-element models of induced heart failure with preserved ejection fraction (HFpEF). Following implantation, the treated models were compared to the corresponding untreated and healthy pre-induction models. The influence of device orientation and its material properties was also examined. Our results demonstrated a reduction in LV pressure and a volumetric improvement. Computed LV stresses have shown no gross irregularities. The device contributed to stress elevation during diastole while having a minor effect during systole, supporting a basic safety profile. This is the first study to use numerical analysis to assess LV expanders' performance on different HFpEF phenotypes. Improvement in heart function was demonstrated in both subjects, suggesting its potential use in various HFpEF manifestations, yet customization and optimal deployment are essential to improve heart performance.

19.
Materials (Basel) ; 16(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687582

RESUMO

Friction stir welding (FSW) is a manufacturing process that many industries have adopted to join metals in a solid state, resulting in unique properties. However, studying aspects like temperature distribution, stress distribution, and material flow experimentally is challenging due to severe plastic deformation in the weld zone. Therefore, numerical methods are utilized to investigate these parameters and gain a better understanding of the FSW process. Numerical models are employed to simulate material flow, temperature distribution, and stress state during welding. This allows for the identification of potential defect-prone zones. This paper presents a comprehensive review of research activities and advancements in numerical analysis techniques specifically designed for friction stir welding, with a focus on their applicability to component manufacturing. The paper begins by examining various types of numerical methods and modeling techniques used in FSW analysis, including finite element analysis, computational fluid dynamics, and other simulation approaches. The advantages and limitations of each method are discussed, providing insights into their suitability for FSW simulations. Furthermore, the paper delves into the crucial variables that play a significant role in the numerical modeling of the FSW process.

20.
Front Bioeng Biotechnol ; 11: 1225495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711443

RESUMO

Electric fields find use in tissue engineering but also in sensor applications besides the broad classical application range. Accurate numerical models of electrical stimulation devices can pave the way for effective therapies in cartilage regeneration. To this end, the dielectric properties of the electrically stimulated tissue have to be known. However, knowledge of the dielectric properties is scarce. Electric field-based methods such as impedance spectroscopy enable determining the dielectric properties of tissue samples. To develop a detailed understanding of the interaction of the employed electric fields and the tissue, fine-grained numerical models based on tissue-specific 3D geometries are considered. A crucial ingredient in this approach is the automated generation of numerical models from biomedical images. In this work, we explore classical and artificial intelligence methods for volumetric image segmentation to generate model geometries. We find that deep learning, in particular the StarDist algorithm, permits fast and automatic model geometry and discretisation generation once a sufficient amount of training data is available. Our results suggest that already a small number of 3D images (23 images) is sufficient to achieve 80% accuracy on the test data. The proposed method enables the creation of high-quality meshes without the need for computer-aided design geometry post-processing. Particularly, the computational time for the geometrical model creation was reduced by half. Uncertainty quantification as well as a direct comparison between the deep learning and the classical approach reveal that the numerical results mainly depend on the cell volume. This result motivates further research into impedance sensors for tissue characterisation. The presented approach can significantly improve the accuracy and computational speed of image-based models of electrical stimulation for tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA