Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 220: 115207, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603659

RESUMO

Olive oil production leads to the generation of olive mill wastewater (OMWW). Due to the presence of phenolic compounds, they are difficult to process, but they represent a source of high-added value chemicals since they have antioxidant and therapeutic properties. This work has studied the extraction of phenolic compounds from a type of OMWW, olive vegetation water, which presents these compounds in a more diluted dosage than in other studied to date, to revalue this waste stream. A real olive vegetation water from a Spanish olive oil producer was used, and liquid-liquid extraction was applied. Terpenoids and terpene-based hydrophobic eutectic solvents were systematically used to extract phenolic compounds following the concentrations of tyrosol, catechol, caffeic acid, and total phenolic content. By molecular simulation with the COSMO-RS method, 4 terpenoids, and 2 eutectic solvents were selected and compared with 2 conventional solvents. The Solvent/Feed ratio in the extraction of phenolic compounds was studied, showing that the solvents with the highest extraction results were geraniol, eucalyptol, and eutectic solvent menthol + camphor, which outperformed conventional solvents methyl isobutyl ketone and diisopropyl ether. Menthol + camphor gave total phenol extraction yields of 88.73% at a Solvent/Feed ratio in volume of 0.50, surpassing all solvents tested. A solvent reuse and regeneration process was applied by back-extraction of the 4 solvents: FTIR results showed the stability of the solvents while maintaining yields in the solvent reuse process. The phenolic compounds could be concentrated in the alkaline phase to factors up to 49.3 to the initial concentration in olive vegetation water. The alkaline phases were neutralized to obtain a precipitate with a caffeic acid content of up to 26 % wt%, and a tyrosol-rich supernatant with a concentration of up to 6.54 g/L. This work proposes a process using natural solvents to extract phenolic compounds from olive vegetation water.


Assuntos
Antioxidantes , Olea , Solventes/química , Antioxidantes/análise , Água , Terpenos , Olea/química , Cânfora , Mentol , Azeite de Oliva/química , Fenóis/análise , Águas Residuárias
2.
Environ Res ; 216(Pt 3): 114399, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309216

RESUMO

Olive mill wastewater (OMW), produced during olive oil production, contains high levels of salt contents, organic matter, suspended particles, and toxic chemicals (particularly phenols), which all result in increased biological and chemical oxygen demand. Olive Oil Mills' Wastes (OMW), which have dark brown color with unpleasant smell, consist mainly of water, high organic (mainly phenols and polyphenols) and low inorganic compounds (e.g. potassium and phosphorus), as well as grease. OMW components can negatively affect soil's physical, chemical, and biological properties, rendering it phytotoxic. However, OMW can positively affect plants' development when it's applied to the soil after pretreatment and treatment processes due to its high mineral contents and organic matter. There are various approaches for removing impurities and the treatment of OMW including chemical, biological, thermal, physiochemical, and biophysical processes. Physical techniques involve filtration, dilution, and centrifugation. Thermal methods include combustion and pyrolysis; biological techniques use anaerobic and aerobic techniques, whereas adsorption and electrocoagulation act as physiochemical methods, and coagulation and flocculation as biophysical methods. In contrast, combined biological treatment methods use co-digestion and composting. A comparison of the effects of both treated and untreated OMW samples on plant development and soil parameters can help us to understand the potential role of OMW in increasing soil fertility. This review discusses the impacts of untreated OMW and treated OMW in terms of soil characteristics, seed germination, and plant growth. This review summarizes all alternative approaches and technologies for pretreatment, treatment, and recovery of valuable byproducts and reuse of OMW across the world.


Assuntos
Olea , Águas Residuárias , Águas Residuárias/química , Olea/química , Azeite de Oliva , Solo/química , Fenóis/análise , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos
3.
Appl Microbiol Biotechnol ; 107(15): 4973-4985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329489

RESUMO

Olive mill wastewater (OMW) is a zero-cost substrate for numerous value-added compounds. Although several studies on the production of lipids and carotenoids by Rhodotorula glutinis in OMW exist, none of them has specifically focused on the conditions for a target lipid or carotenoid. This study presents cultivation conditions that selectively stimulate the cell biomass, individual carotenoids and lipids. It was found that supplemental carbon and nitrogen sources as well as illumination affected cell biomass the most. High temperature, low initial pH, illumination, lack of urea and presence of glycerol stimulated the lipid synthesis. The highest total lipid content obtained in undiluted OMW supplemented with urea was 11.08 ± 0.17% (w/w) whilst it was 41.40 ± 0.21% (w/w) when supplemented with glycerol. Moreover, the main fatty acid produced by R. glutinis in all media was oleic acid, whose fraction reached 63.94 ± 0.58%. Total carotenoid yield was significantly increased with low initial pH, high temperature, illumination, certain amounts of urea, glycerol and cultivation time. Up to 192.09 ± 0.16 µg/g cell carotenoid yield was achieved. Torularhodin could be selectively produced at high pH, low temperature and with urea and glycerol supplementation. To selectively induce torulene synthesis, cultivation conditions should have low pH, high temperature and illumination. In addition, low pH, high temperature and urea supplementation served high production of ß-carotene. Up to 85.40 ± 0.76, 80.67 ± 1.40 and 39.45 ± 0.69% of torulene, torularhodin and ß-carotene, respectively, were obtained under selected conditions. KEY POINTS: • Cultivation conditions selectively induced target carotenoids and lipids • 41.40 ± 0.21% (w/w) lipid content and 192.09 ± 0.16 µg/g cell carotenoid yield were achieved • Markedly high selectivity values for torularhodin and torulene were achieved.


Assuntos
Olea , Rhodotorula , beta Caroteno , Águas Residuárias , Glicerol , Carotenoides , Ácidos Graxos
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894755

RESUMO

Wound-healing delay is one of the major problems of type 2 diabetes, representing also a clinical emergency in non-healing chronic wounds. Natural antioxidants show interesting wound-healing properties, including those extracted from waste derived from olive oil production. Olive mill wastewater is one of the main by-products of the olive oil-making process, and it is rich in high-value secondary metabolites, mainly hydroxytyrosol. We proposed an eco-friendly extraction method, employing both ultrasound-assisted and Soxhlet techniques and ethanol as a solvent, to recover valuable molecules from Roggianella cv (Olea europea L.) olive mill wastewater, which was further entrapped in a pectin polymer via an enzymatic reaction using porcine pancreatic lipase. Pectin, in combination with other substances, promoted and accelerated wound healing and demonstrated good potential to produce a biomedical conjugate for wound treatment. The antioxidant activity of the extracts and conjugate were evaluated against lipophilic (IC50 equal to 0.152 mg mL-1) and hydrophilic (IC50 equal to 0.0371 mg mL-1) radical species as well as the in vitro cytotoxicity via NRU, h-CLAT, and a wound-healing scratch assay and assessment. The pectin conjugate did not exert hemolytic effects on the peripheral blood, demonstrating interesting wound-healing properties due to its ability to stimulate cell proliferation in a dose-dependent manner.


Assuntos
Diabetes Mellitus Tipo 2 , Olea , Animais , Suínos , Águas Residuárias , Pectinas/farmacologia , Azeite de Oliva , Antioxidantes/farmacologia
5.
J Environ Manage ; 333: 117467, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764180

RESUMO

Agricultural applications of olive mill wastewater (OMW) represent a critical challenge, consistent with waste recycling and the trend towards a more sustainable pattern of agriculture. In this context, an integrated study on the agroecological applications of OMW from the ultrafiltration (UF) - nanofiltration (NF) process was carried out. This process generated three fractions: UF retentate and NF permeate, depleted in salts and phenolic compounds, were studied for their fertilization and irrigation potential, while NF retentate, enriched in these elements, was studied for its potential as a bioherbicide. The phytotoxicity of the NF retentate fraction on two crops (maize and flax) was evaluated on seedlings growth and chloroplast pigments content. In addition, the induced defense responses in maize and flax seedlings were investigated by measuring two parameters: the activity of the detoxification enzyme glutathione-S-transferase (GST) and the concentration of polyphenols, as a component of the antioxidant defense strategy in plants. Biomass, height, and chloroplast pigments content decreased progressively with increasing NF retentate concentration. Conversely, an increase in GST activity and polyphenol concentration was observed. These results highlighted the ability of OMW to induce an oxidative stress on maize and flax seedlings, triggering a defense response through GST and phenolic compounds. On the other hand, in vitro tests on the phytotoxicity of the NF retentate fraction on the common weed Sinapis arvensis were carried out. No germination was observed even with the lowest dilution applied, thus establishing the first data about the selectivity of potential OMW-derived bioherbicides. On the other hand, UF retentate and NF permeate treatments led to a significant increase in maize growth: these fractions could then be considered as a promising organic fertilizer for degraded agricultural soils, as well as an alternative water source for crops irrigation.


Assuntos
Olea , Águas Residuárias , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Resíduos Industriais/análise , Fenóis/análise , Polifenóis/análise , Plântula/química , Azeite de Oliva
6.
Molecules ; 28(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677704

RESUMO

Olive mill wastewater (OMWW) represents a by-product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce environmental impact. The objective of the present study was to obtain a new functional beverage with a health-promoting effect starting from OMWW. Fresh OMWW were pre-treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an increase in the antioxidant and anti-inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage.


Assuntos
Olea , Águas Residuárias , Humanos , Olea/química , Células CACO-2 , Fenóis/análise , Meio Ambiente , Resíduos Industriais/análise , Azeite de Oliva
7.
Appl Microbiol Biotechnol ; 106(22): 7477-7489, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36222896

RESUMO

The agro-industrial by-products corn steep liquor (CSL) and olive mill wastewater (OMW) were evaluated as low-cost substrates for rhamnolipid production by Burkholderia thailandensis E264. In a culture medium containing CSL (7.5% (v/v)) as sole substrate, B. thailandensis E264 produced 175 mg rhamnolipid/L, which is about 1.3 times the amount produced in the standard medium, which contains glycerol, peptone, and meat extract. When the CSL medium was supplemented with OMW (10% (v/v)), rhamnolipid production further increased up to 253 mg/L in flasks and 269 mg/L in a bioreactor. Rhamnolipids produced in CSL + OMW medium reduced the surface tension up to 27.1 mN/m, with a critical micelle concentration of 51 mg/L, better than the values obtained with the standard medium (28.9 mN/m and 58 mg/L, respectively). However, rhamnolipids produced in CSL + OMW medium displayed a weak emulsifying activity when compared to those produced in the other media. Whereas di-rhamnolipid congeners represented between 90 and 95% of rhamnolipids produced by B. thailandensis E264 in CSL and the standard medium, the relative abundance of mono-rhamnolipids increased up to 55% in the culture medium containing OMW. The difference in the rhamnolipid congeners produced in each medium explains their different surface-active properties. To the best of our knowledge, this is the first report of rhamnolipid production by B. thailandensis using a culture medium containing agro-industrial by-products as sole ingredients. Furthermore, rhamnolipids produced in the different media recovered around 60% of crude oil from contaminated sand, demonstrating its potential application in the petroleum industry and bioremediation. KEY POINTS: • B. thailandensis produced RL using agro-industrial by-products as sole substrates • Purified RL displayed excellent surface activity (minimum surface tension 27mN/m) • Crude RL (cell-free supernatant) recovered 60% of crude oil from contaminated sand.


Assuntos
Burkholderia , Petróleo , Análise Custo-Benefício , Areia , Glicolipídeos , Águas Residuárias , Tensoativos , Pseudomonas aeruginosa
8.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233221

RESUMO

A novel extracellular lipase from a filamentous fungus Ascomycota strain, P22, was isolated from olive mill wastewater, then purified and characterized. This strain was identified as Penicillium crustosum Thom based on sequencing analyses. Penicilliumcrustosum Thom strain P22 lipase (PCrL) was purified 63-fold to homogeneity using ammonium sulfate precipitation and chromatography on a Q-Sepharose Fast Flow column, with a total yield of 34%. The purified PCrL had a molecular mass of 28 kDa, estimated by SDS-PAGE. The 20 NH2-terminal amino-acid residues showed a high degree of homology with those of other Penicillium lipases. The specific activity of PCrL at pH 9 and 37 °C were found to be 5000 and 10,000 U/mg on olive oil and trioctanoin emulsions, respectively. PCrL exhibited clear regioselectivity toward the sn-1 position of the surface-coated triglycerides which were esterified with α-eleostearic acid at the sn-1/3 position. PCrL was completely inhibited by 53 µM of Orlistat, 5 mM of phenylmethylsulfonylfluoride, and 2 mM of diiodopropyl fluorophosphate, suggesting that it belonged to the serine lipase family. PCrL showed high activity and stability in the presence of water-immiscible organic solvents, surfactant, and oxidizing agents, and showed considerable compatibility with commercial laundry detergents. Washing performance analysis revealed that it could effectively remove oil stains. Hence, PCrL has several attractive properties that make it a promising potential candidate for detergent formulations.


Assuntos
Lipase , Olea , Sulfato de Amônio , Detergentes/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lipase/química , Olea/metabolismo , Azeite de Oliva , Orlistate , Oxidantes , Sefarose , Serina , Solventes/química , Especificidade por Substrato , Tensoativos/farmacologia , Temperatura , Triglicerídeos , Águas Residuárias , Água
9.
J Environ Manage ; 306: 114490, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063830

RESUMO

A series of adsorbents was developed by physical (CO2) and chemical (KOH) activation of two bio-residues: olive stones (OS) and wood from olive tree pruning (OTP). The physicochemical properties of such materials were determined and correlated with their adsorptive performance in the removal of phenolic compounds of olive mill wastewater (OMW). Adsorption isotherms and kinetics of single phenolic acids, as well as the kinetics for competitive multi-compound adsorption, were fitted by applying different models, though Langmuir and pseudo-second order models fitted better the experimental results, respectively. The intraparticle diffusion model pointed out that mesoporosity reduces the influence of phenolic compounds' restrictions in the external film diffusion of the adsorbent particle-solution interphase, but adsorption capacity linearly increases with the micropore volume accessible to N2 at -196 °C (and also with BET surface area), while diffusion into ultramicropores (<0.7 nm, determined by CO2-adsorption) is slow and presents minor influence on the total adsorption capacity. After saturation, thermal regeneration of spent adsorbents allows the removal of adsorbed products, enabling the reuse of samples whilst maintaining a significant performance.


Assuntos
Olea , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Azeite de Oliva , Águas Residuárias
10.
J Environ Manage ; 305: 114254, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972048

RESUMO

This work aims to monitor inorganic nutrients (phosphorus and ammonium) behavior during the injection of Olive Mill Wastewater (OMWW) in an activated sludge process. The system was fed firstly with urban wastewater (UWW) and was alimented after its stabilization with OMWW (at 0.1% (v/v) and 1%) for 100 days. Total polyphenols, chemical oxygen demand (CODT), nutrients, and biomass behavior against OMWW injection were investigated. The results showed a satisfactory biomass growth of 7.12 gMLVSS.L-1 and a high microbial activity of 21.88 mg O2.gMLVSS-1.h-1. An overall removal reached 90%, 92%, 59% and 93% respectively for, CODT, total polyphenols, PO43- and NH4+. Adding OMWW at 1% seems to improve the nutrients elimination, especially phosphorus by the biological process probably though bringing more biodegradable organics. The chemical processes (precipitation/complexation) could also be involved in phosphorus removal, due to the OMWW wealth on salts elements such as calcium.


Assuntos
Olea , Águas Residuárias , Nutrientes , Esgotos , Eliminação de Resíduos Líquidos
11.
J Environ Manage ; 301: 113853, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624575

RESUMO

Olive mill wastewater, a by-product of olive oil production after the operation of three-phase decanters, was used in a thermophilic anaerobic digester targeting efficient bioconversion of its organic load into biogas. An active anaerobic inoculum originating from a mesophilic reactor, was acclimatized under thermophilic conditions and was filled into a high-rate upflow packed bed reactor. Its performance was tested towards the treatment efficacy of olive mill wastewater under thermophilic conditions reaching the minimum hydraulic retention time of 4.2 d with promising results. As analysis of the microbial communities is considered to be the key for the development of anaerobic digestion optimization techniques, the present work focused on characterizing the microbial community and its variation during the reactor's runs, via 16S rRNA amplicon sequencing. Identification of new microbial species and taxonomic groups determination is of paramount importance as these representatives determine the bioprocess outcome. The current study results may contribute to further olive mill wastewater exploitation as a potential source for efficient biogas production.


Assuntos
Reatores Biológicos , Águas Residuárias , Anaerobiose , Biocombustíveis , Metano , RNA Ribossômico 16S/genética
12.
J Environ Manage ; 302(Pt B): 114076, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781052

RESUMO

In this study two plant species, Punica granatum L. and Myrtus communis L., have been tested as candidates for phytoremediation of olive mill wastewater (OMW) through recirculation in soil pilot units, according to the proposed patented technology by Santori and Cicalini [EP1216963 A. 26 Jun 2002]. Wastewater was treated in batches of low to high organics strength (COD: 2 700-45 700 mg/L) during summer months of two consecutive years. Dynamics of the most important wastewater parameters were investigated, and corresponding removal rates were estimated. During treatment of low organic load OMW, average removal rate of organics, phenolics, total nitrogen and total phosphorus were 0.68 g-COD/kg-soil d, 0.073 g-TPh/kg-soil d, 0.033 g-TN/kg-soil d and 0.0074 g-TP/kg-soil d respectively and plants proved to be tolerant to the OMW. During treatment of high organic load OMW removal rates were roughly 10-fold higher although phytotoxic symptoms were observed. Plants were found to contribute greatly to the OMW treatment process since organics removal rates in pilot units were found to be at least 10-fold higher than in wastewater treatment in non-vegetated soil. Plant species with high added value products such as pomegranate and myrtle trees were used in this study, improving the circular economy potential of the aforementioned technology. Moreover, its efficiency has been demonstrated by quantification of the overall removal rates of key constituents as well as the contribution of the plants in the OMW treatment.


Assuntos
Olea , Águas Residuárias , Biodegradação Ambiental , Resíduos Industriais/análise , Azeite de Oliva , Eliminação de Resíduos Líquidos
13.
J Environ Manage ; 303: 114188, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875565

RESUMO

Treatment of olive mill wastewater (OMW) has received considerable research globally due to its influence on the technical, economic, and environmental sustainability of wastewater biogas production. This work presents a novel combined biological process for OMW treatment in terms to produce for the first time, treated OMW and a valuable microalgae biomass. The process involves anaerobic co-digestion (AD), a low cut-off membrane ultra-filtration (UF) and a subsequent Scenedesmus sp. culture. The AD of OMW was conducted at high initial COD ranging from 28 to 38 g/L using an up-flow anaerobic fixed bed bio-reactor (300 L). Results revealed that the maximum biogas production was about 0.507 L/g CODintroduced.day containing 73% of methane corresponding to a methane yield of 0.370 L/g CODintroduced.day obtained at an organic loading rate of 4.58 g COD/L.day. High removal levels of COD, total phenolic compounds, and total suspended solids in the anaerobic liquid digestate (ALD) were achieved after AD and UF. Scenedesmus sp. was then cultivated on the ultra-filtrated ALD. A maximum biomass productivity of 0.15 g/L.day was recorded when Scenedesmus sp. is grown on 25% of ultra-filtrated ALD with a maximum nitrogen removal rate of 15.18 mg/L.day and an almost total elimination of phosphorus and phenolic compounds.


Assuntos
Microalgas , Olea , Purificação da Água , Anaerobiose , Digestão , Metano
14.
Compr Rev Food Sci Food Saf ; 21(2): 1218-1253, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068049

RESUMO

Among the most important agro-industrial activities in the Mediterranean basin, olive oil production has a high impact on the economy of many Mediterranean countries. However, olive oil extraction generates huge quantities of byproducts, including leaves, pomace residues, stones and wastewater, which have severe environmental impacts mainly because of their phytotoxicity and great organic content. Olive oil byproducts are regarded as inexpensive and abundant raw materials rich in bioactive compounds with high and varied health-related activities. Several phenolic compounds and terpenoids were recovered from olive byproducts using different conventional and advanced extraction methods due to their potential to be used in food, packaging, pharmaceutical, and cosmetic industries. Recently, the use of olive byproducts and their functional compounds to enhance the functional properties of packaging systems was investigated as a sustainable strategy for food preservation, fostering the sustainability of the olive-oil chain, and promoting circular economy. In this framework, the main goals of this review are to summarize the main bioactive compounds in olive byproducts, to review the main advancements in their extraction, purification, and characterization, and finally to discuss their applications in food packaging systems as well as safety-related aspects.


Assuntos
Olea , Embalagem de Alimentos , Olea/química , Azeite de Oliva/análise , Azeite de Oliva/química , Fenóis/análise , Folhas de Planta/química
15.
Anal Bioanal Chem ; 413(15): 3833-3845, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33939004

RESUMO

Long-chain fatty acids (LCFA) are commonly found in lipid-rich wastewaters and are a key factor to monitor the anaerobic digesters. A new simple, fast, precise, and suitable method for routine analysis of LCFA is proposed. The system involves in-syringe-magnetic stirring-assisted dispersive liquid-liquid microextraction (DLLME) prior to gas chromatography-mass spectrometry (GC-MS) without a derivatization process. Calibration curves were prepared in an ethanol solution (R2 ≥ 0.996), which was also useful as disperser solvent. Hexane was chosen as the extraction solvent. Several parameters (pH, ionic strength, extraction solvent volume, stirring time) were optimized in multivariate and univariate studies. Limits of detection (LODs) were found in the range 0.01-0.05 mg L-1 and good precision inter-day (RSDs≤7.9%) and intra-day (RSDs≤4.4%) were obtained. The method was applied to quantify LCFA in supernatants of anaerobic digesters and olive mill wastewaters (OMW). Palmitic, stearic, and oleic acids were the most abundant fatty acid in the analyzed samples and the relative recoveries for all of them were between 81 and 113%.


Assuntos
Anaerobiose , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Líquida/métodos , Olea/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Meios de Cultura , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes
16.
Prep Biochem Biotechnol ; 51(7): 659-668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33269956

RESUMO

Laccases are a group of oxidases that catalyze the oxidation of a wide range of electron rich substrates like phenolic compounds, lignin and aromatic amines. They are of interest because of their potential to be used in environmental and industrial applications. In this research, potent laccase producer fungi were screened and isolated from olive mill wastewater (OMW). One of the 23 isolated fungi was identified as Galactomyces geotrichum based on 18S rDNA sequence analysis that detected good laccase activity. Produced laccase had a molecular weight of 55 kDa that was confirmed by zymogram analysis. This is the first report about the optimization of laccase Production by G. geotrichum under solid-state fermentation. The optimization was made by the Taguchi design of experiments (DOE) methodology. An orthogonal array (L25) was designed using Minitab 19 software to study four effective process factors in five levels for laccase production. The optimum condition derived was; moisture content (80%), fermentation time (14 day), CuSO4⋅5H2O as the inducer (300 µM), glucose as a co-substrate (5 g/L). Maximum laccase activity of 52.86 (U/g of dry substrate) was obtained using optimum fermentation condition. This study aimed to better understand the laccase producing microorganisms in OMW and take them to OMW treatment that is rich in phenolic compounds.


Assuntos
Proteínas Fúngicas , Geotrichum/crescimento & desenvolvimento , Lacase , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Lacase/biossíntese , Lacase/química , Lacase/isolamento & purificação
17.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917980

RESUMO

A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.


Assuntos
Antioxidantes/farmacologia , Queratinócitos/efeitos da radiação , Olea/química , Oxidantes/toxicidade , Polifenóis/farmacologia , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Corantes Fluorescentes/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Ultrafiltração
18.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834035

RESUMO

Olive oil production using three-phase decanter systems creates olive oil and two by-products: olive mill wastewater (OMWW) and pomace. These by-products contain the highest share of polyphenolic compounds that are known to be associated with beneficial effects on human health. Therefore, they are an attractive source of phenolic compounds for further industrial use in the cosmetic, pharmaceutical and food industries. The use of these phenolics is limited due to difficulties in recovery, high reactivity, complexity of the OMWW matrix and different physiochemical properties of phenolic compounds. This research, focused on OMWW, was performed in two phases. First, different polyphenol extraction methods were compared to obtain the method that yields the highest polyphenol concentration. Twenty-five phenolic compounds and their isomers were determined. Acidifying OMWW, followed by five minutes of ultrasonication, resulted in the highest measured polyphenol content of 27 mg/L. Second, the collection of polyphenolic compounds from OMWW via adsorption on unmodified iron (II, III) oxide particles was investigated. Although low yields were obtained for removed polyphenolic compounds in one removal cycle, the process has a high capability to be repeated.


Assuntos
Óxido Ferroso-Férrico/química , Resíduos Industriais , Olea , Polifenóis/química , Águas Residuárias/química , Purificação da Água , Humanos , Eslovênia
19.
Molecules ; 26(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670606

RESUMO

Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological activities that make it one of the most important functional foods. Both the constituents of the lipid fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by acting on various body components, at concentrations established by the European Food Safety Authority's claims. In addition to the main product obtained by the mechanical pressing of the fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields also because of their antioxidant effect. This work presents an overview of the biological activities of these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as their main formulations currently available on the market.


Assuntos
Fatores Econômicos , Saúde , Inflamação/patologia , Olea/metabolismo , Estresse Oxidativo , Metabolismo Secundário , Animais , Humanos , Olea/química
20.
J Sci Food Agric ; 101(13): 5508-5519, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33682135

RESUMO

BACKGROUND: The three-phase extraction process of olive oil produces highly contaminated wastewater (OMW). The elimination of this toxic by-product is an important environmental issue that requires the development of an appropriate management solution. The cultivation of microalgae using OMW as growth medium was therefore studied using single (the culture medium was formed by 0% to 80% ultrafiltered olive mill wastewater (OMUF) or OMW added to BG11) and two-stage strategies (microalgae were firstly cultivated in the BG11 medium. In the second stage, 40% and 80% of OMUF and OMW were added to the culture). In this work, biodegradation of OMW and subsequent extraction of lipid and antioxidant molecules was investigated as an ecofriendly method for the bioremediation and valorization of OMW. RESULTS: For two-stage cultivation, OMUF and OMW stress enhanced the intracellular amount of polyphenol accumulated in Scenedesmus sp. and exhibited the highest 2, 2-diphenyl-1- picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzoline-6-sulfonate) radical (ABTS) scavenging ability compared with single-stage cultivation. Moreover, the lipid profile is dominated by polyunsaturated acids. In the single-stage cultivation, the Ch a, Ch b, carotenoid, carbohydrate and lipid content of 2.57, 7.4, 1.69, 368, and 644 g kg-1 were observed in 40% OMUF added culture, respectively, along with high biomass productivity and 58% of polyphenol removal. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the biomass of Scenedesmus sp. cultured on 40% OMUF did not show any toxic effect, making it an efficient strategy. CONCLUSION: The results indicate that Scenedesmus sp. is a promising microalga for the biotreatment of OMW and the extraction of bioactive metabolites. © 2021 Society of Chemical Industry.


Assuntos
Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Polifenóis/metabolismo , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Águas Residuárias/análise , Biodegradação Ambiental , Manipulação de Alimentos , Microalgas/química , Azeite de Oliva/química , Polifenóis/análise , Scenedesmus/química , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA