RESUMO
INTRODUCTION: Increasing numbers of cases of mild asymptomatic pulmonary alveolar proteinosis (PAP) are being reported with the recent increase in chest computed tomography (CT). Bronchoscopic diagnosis of mild PAP is challenging because of the patchy distribution of lesions, which makes it difficult to obtain sufficient biopsy samples. Additionally, the pathological findings of mild PAP, particularly those that differ from severe PAP, have not been fully elucidated. This study aimed to clarify the pathological findings of mild PAP and the usefulness of optical biopsy using probe-based confocal laser endomicroscopy (pCLE). METHODS: We performed bronchoscopic optical biopsy using pCLE and tissue biopsy in 5 consecutive patients with PAP (three with mild PAP and two with severe PAP). We compared the pCLE images of mild PAP with those of severe PAP by integrating clinical findings, tissue pathology, and chest CT images. RESULTS: pCLE images of PAP showed giant cells with strong fluorescence, amorphous substances, and thin alveolar walls. Images of affected lesions in mild PAP were equivalent to those obtained in arbitrary lung lesions in severe cases. All 3 patients with mild PAP spontaneously improved or remained stable after ≥3 years of follow-up. Serum autoantibodies to granulocyte-macrophage colony-stimulating factor were detected in all 5 cases. CONCLUSION: Optical biopsy using pCLE can yield specific diagnostic findings, even in patients with mild PAP. pCLE images of affected areas in mild and severe PAP showed similar findings, indicating that the dysfunction level of pathogenic alveolar macrophages in affected areas is similar between both disease intensities.
Assuntos
Doenças Autoimunes , Proteinose Alveolar Pulmonar , Humanos , Proteinose Alveolar Pulmonar/diagnóstico por imagem , Microscopia Confocal/métodos , Biópsia , LasersRESUMO
OBJECTIVES: Confocal laser endomicroscopy (CLE) is a novel non-invasive point-of-care optical biopsy technology that enables real-time in vivo microscopic visualisation of cellular and tissue architecture. In this study, we assessed the diagnostic accuracy of a hand-held fluorescence single-fibre distal-scanning CLE (fsdCLE) platform for diagnosing oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Forty-seven patients presenting with 63 distinct oral mucosal lesions were subjected to optical biopsy using a miniaturised fsdCLE system (ViewnVivo®, Optiscan Imaging Ltd) and topical exogenous acriflavine hydrochloride contrast agent before undergoing tissue biopsy and histopathological consensus review by four pathologists. CLE images were captured in vivo in real-time during clinical examination and assessed on-the-fly for the presence of cellular and architectural features of OED/OSCC offering an instantaneous diagnosis. Predicted optical diagnoses were compared to definitive consensus tissue histopathology. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were calculated for the presence/absence of dysplasia/malignancy on optical biopsy. Percentage agreement, Fleiss' kappa, and intraclass correlation coefficient (ICC) were calculated for each assessment stage during the consensus histopathology process. RESULTS: Diagnostic accuracy was extremely high at 88.9%. Other metrics were sensitivity 86.8%, specificity 92%, PPV 94.3% and NPV 82.1%. One hundred percent of carcinoma cases were detected accurately using CLE in the clinic. CONCLUSION: fsdCLE is a highly accurate, easy-to-use, rapid and slide-free point-of-care in vivo optical technology for diagnosing OED/OSCC and discriminating between dysplastic and non-dysplastic pathology. It demonstrates near-perfect agreement with traditional consensus histopathology without the need for physical tissue biopsy.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Microscopia Confocal/métodos , Neoplasias Bucais/diagnóstico por imagem , Endoscopia/métodos , LasersRESUMO
OBJECTIVES: Currently, one of the most pressing issues for surgeons in the treatment of obstructive jaundice is the ability to assess the functional state of the liver and to detect and determine the degree of liver failure in a timely manner with simple and objective techniques. In this regard, the use of fluorescence spectroscopy method can be considered as one of the ways to improve the informativity of existing diagnostic algorithms in clinical practice and to introduce new diagnostic tools. Thus, the aim of the work was to study in vivo the functional state of liver parenchyma by the method of fluorescence spectroscopy implemented through a needle probe and assess the contribution of the main tissue fluorophores to reveal new diagnostic criteria. MATERIALS AND METHODS: We compared data from 20 patients diagnosed with obstructive jaundice and 11 patients without this syndrome. Measurements were performed using a fluorescence spectroscopy method at excitation wavelengths of 365 and 450 nm. Data were collected using a 1 mm fiber optic needle probe. The analysis was based on the comparison of the results of deconvolution with the combinations of Gaussian curves reflecting the contribution of the pure fluorophores in the liver tissues. RESULTS: The results showed a statistically significant increase in the contribution of curves reflecting NAD(P)H fluorescence, bilirubin, and flavins in the group of patients with obstructive jaundice. This and the calculated redox ratio values indicated that the energy metabolism of the hepatocytes may have shifted to glycolysis due to hypoxia. An increase in vitamin A fluorescence was also observed. It may also serve as a marker of liver damage, indicating impaired vitamin A mobilization from the liver due to cholestasis. CONCLUSIONS: The results obtained reflect changes associated with shifts in the content of the main fluorophores characterizing hepatocyte dysfunction caused by accumulation of bilirubin and bile acids and after disturbance of oxygen utilization. The contributions of NAD(P)H, flavins, and bilirubin as well as vitamin A can be used for further studies as promising diagnostic and prognostic markers for the course of liver failure. Further work will include collecting fluorescence spectroscopy data in patients with different clinical effects of obstructive jaundice on postoperative clinical outcome after biliary decompression.
Assuntos
Icterícia Obstrutiva , Falência Hepática , Humanos , Icterícia Obstrutiva/etiologia , Icterícia Obstrutiva/metabolismo , Fluorescência , Vitamina A/metabolismo , NAD/metabolismo , Fígado/diagnóstico por imagem , Bilirrubina/metabolismo , Falência Hepática/complicações , Falência Hepática/metabolismo , Flavinas/metabolismoRESUMO
Confocal scanning Raman and photoluminescence (PL) microspectroscopy is a structure-sensitive optical method that allows the non-invasive analysis of biomarkers in the skin tissue. We used it to perform in vitro diagnostics of different malignant skin neoplasms at several excitation wavelengths (532, 785 and 1064 nm). Distinct spectral differences were noticed in the Raman spectra of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), compared with healthy skin. Our analysis of Raman/PL spectra at the different excitation wavelengths enabled us to propose two novel wavelength-independent spectral criteria (intensity ratios for 1302 cm-1 and 1445 cm-1 bands, 1745 cm-1 and 1445 cm-1 bands), related to the different vibrational "fingerprints" of cell membrane lipids as biomarkers, which was confirmed by the multivariate curve resolution (MCR) technique. These criteria allowed us to differentiate healthy skin from BCC and SCC with sensitivity and specificity higher than 95%, demonstrating high clinical importance in the differential diagnostics of skin tumors.
Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Análise Espectral Raman/métodos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/patologia , Pele/patologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologiaRESUMO
This review presents the changes that the imaging of articular cartilage has undergone throughout the last decades. It highlights that the expectation is no longer to image the structure and associated functions of articular cartilage but, instead, to devise methods for generating non-invasive, function-depicting images with quantitative information that is useful for detecting the early, pre-clinical stage of diseases such as primary or post-traumatic osteoarthritis (OA/PTOA). In this context, this review summarizes (a) the structure and function of articular cartilage as a molecular imaging target, (b) quantitative MRI for non-invasive assessment of articular cartilage composition, microstructure, and function with the current state of medical diagnostic imaging, (c), non-destructive imaging methods, (c) non-destructive quantitative articular cartilage live-imaging methods, (d) artificial intelligence (AI) classification of degeneration and prediction of OA progression, and (e) our contribution to this field, which is an AI-supported, non-destructive quantitative optical biopsy for early disease detection that operates on a digital tissue architectural fingerprint. Collectively, this review shows that articular cartilage imaging has undergone profound changes in the purpose and expectations for which cartilage imaging is used; the image is becoming an AI-usable biomarker with non-invasive quantitative functional information. This may aid in the development of translational diagnostic applications and preventive or early therapeutic interventions that are yet beyond our reach.
Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Inteligência Artificial , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Imageamento por Ressonância Magnética/métodos , PesquisaRESUMO
The autofluorescence of specific fatty acids, retinoids, and bilirubin in crude serum can reflect changes in liver functional engagement in maintaining systemic metabolic homeostasis. The role of these fluorophores as intrinsic biomarkers of pharmacological actions has been investigated here in rats administered with obeticholic acid (OCA), a Farnesoid-X Receptor (FXR) agonist, proven to counteract the increase of serum bilirubin in hepatic ischemia/reperfusion (I/R) injury. Fluorescence spectroscopy has been applied to an assay serum collected from rats submitted to liver I/R (60/60 min ± OCA administration). The I/R group showed changes in the amplitude and profiles of emission spectra excited at 310 or 366 nm, indicating remarkable alterations in the retinoid and fluorescing fatty acid balance, with a particular increase in arachidonic acid. The I/R group also showed an increase in bilirubin AF, detected in the excitation spectra recorded at 570 nm. OCA greatly reversed the effects observed in the I/R group, confirmed by the biochemical analysis of bilirubin and fatty acids. These results are consistent with a relationship between OCA anti-inflammatory effects and the acknowledged roles of fatty acids as precursors of signaling agents mediating damaging responses to harmful stimuli, supporting serum autofluorescence analysis as a possible direct, real-time, cost-effective tool for pharmacological investigations.
Assuntos
Hepatopatias , Traumatismo por Reperfusão , Ratos , Animais , Ácidos Graxos/metabolismo , Bilirrubina/metabolismo , Hepatopatias/metabolismo , Fígado/metabolismo , Isquemia/metabolismo , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Biomarcadores/metabolismoRESUMO
BACKGROUND: This study observed and described the morphological characteristics of the endometrium of the resected uterus using confocal laser endomicroscopy. This included benign endometrium, non-atypical endometrial hyperplasia, atypical endometrial hyperplasia, and endometrial carcinoma, thereby laying a foundation for finding the precise localization and resection of endometrial lesions, given the feasibility of confocal laser endomicroscopy-assisted hysteroscopy. METHODS: This prospective study included 32 patients who underwent hysterectomy. We used confocal laser endomicroscopy to observe the endometrium of resected uteruses and described the characteristics of endometrium in different states by comparing histopathological findings (primary objects). The secondary objects of observation were the myometrium, endocervical canal, and surface of the external os of the cervix. RESULTS: A total of 32 patients who underwent hysterectomy for different diseases were included: 9 with endometrial carcinoma (5 with endometrioid carcinoma, 1 with endometrial serous carcinoma, 2 with clear cell carcinoma, and 1 with carcinosarcoma), 2 with atypical endometrial hyperplasia, 9 with benign diseases, 7 with cervical cancer, and 5 with ovarian cancer and borderline tumor. The dynamic images of the endometrium were observed and recorded using probe-based confocal laser endomicroscopy (pCLE). Considering histopathology as the gold standard, the diagnostic concordance rate of pCLE was 96.9% in patients with endometrial carcinoma and precancerous lesions and 100% in patients with endometrial carcinoma. CONCLUSION: Confocal laser endomicroscopy provides real-time high-resolution images of the benign endometrium and endometrial lesions. Compared with histopathology, confocal laser endomicroscopy has high diagnostic accuracy and may become an auxiliary examination tool for hysteroscopy, as it is useful for early identification of endometrial lesions, real-time diagnosis of tumor, and detection of tumor boundaries for complete tumor resection. These findings can lay a foundation for the feasible use of fertility-sparing local excision of tumor lesions by hysteroscopy.
Assuntos
Hiperplasia Endometrial , Neoplasias do Endométrio , Lesões Pré-Cancerosas , Humanos , Feminino , Hiperplasia Endometrial/patologia , Hiperplasia Endometrial/cirurgia , Estudos Prospectivos , Microscopia Confocal/métodos , Endométrio/cirurgia , Endométrio/patologia , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/cirurgia , Neoplasias do Endométrio/patologia , Lesões Pré-Cancerosas/patologia , LasersRESUMO
BACKGROUND: Endocytoscopy (ECS) enables microscopic observation in vivo for the gastrointestinal mucosa; however, there has been no prospective study in which the diagnostic accuracy of ECS for lesions that have not yet undergone histological diagnosis was evaluated. We conducted a surveillance study for patients in a high-risk group of esophageal squamous cell carcinoma (ESCC) and evaluated the in vivo histological diagnostic accuracy of ECS. METHODS: This study was a multicenter prospective study. We enrolled 197 patients in the study between September 1, 2019 and November 30, 2020. The patients first underwent white light imaging and narrow band imaging, and ultra-high magnifying observation was performed if there was a lesion suspected to be an esophageal tumor. Endoscopic submucosal dissection (ESD) was later performed for lesions that were diagnosed to be ESCC by ECS without biopsy. We evaluated the diagnostic accuracy of ECS for esophageal tumorous lesions. RESULTS: ESD was performed for 37 patients (41 lesions) who were diagnosed as having ESCC by ECS, and all of them were histopathologically diagnosed as having ESCC. The sensitivity [95% confidence interval (CI)] was 97.6% (87.7-99.7%), specificity (95% CI) was 100% (92.7-100%), diagnostic accuracy (95% CI) was 98.9% (94.0-99.8%), positive predictive value (PPV) (95% CI) was 100% (91.4-100%) and negative predictive value (NPV) (95% CI) was 98.0% (89.5-99.7%). CONCLUSIONS: ECS has a high diagnostic accuracy and there were no false positives in cases diagnosed and resected as ESCC. Optical biopsy by using ECS for esophageal lesions that are suspected to be tumorous is considered to be sufficient in clinical practice.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biópsia , Células Epiteliais , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/cirurgia , Esofagoscopia/métodos , Humanos , Estudos ProspectivosRESUMO
Optical polarimetry have been extensively used for the non-invasive assessment of biological tissues. However, the knowledge regarding differences in polarimetric signatures of different tissue pathologies is very scattered, confounding the deduction of a global trend of the polarimetric variables for healthy and pathological tissues. The purpose of this study was to bridge this gap. We conducted a rigorous online survey to collect all published studies that report the two most common polarimetric variables (i.e., depolarization and retardance) for any type of tissue pathology. A total of 101 studies describing the polarimetric assessment of tissues were collected, wherein 253 (i.e., nhuman = 149, nanimal = 104) different type of tissues were optically characterized. Most tissue samples (172/253) were investigated in ex vivo settings. The data showed 32 different types of tissues pathologies, where the most common pathology was cancer and its subtypes. The skin tissues were the most frequently explored tissues, followed by tissue samples from breast, colon, liver, and cervix. Although differences in polarimetric signatures of different tissue pathologies were summarized from the included studies, generalization of the results was hindered by the presentation of polarimetric data in a non-uniform format. The analyses presented in this study may provide an important reference for future polarimetric studies that conduct optical assessment of tissues at greater depth, particularly in the context of optical biopsy/digital staining.
Assuntos
Mama , Pele , Animais , Fígado , Análise EspectralRESUMO
To report for the first time the preliminary results for the evaluation of a VRR-LRR™ analyzer based on visible resonance Raman technique to identify human meningioma grades and margins intraoperatively. Unprocessed primary and recurrent solid human meningeal tissues were collected from 33 patients and underwent Raman analysis during surgeries. A total of 1180 VRR spectra were acquired from fresh solid tissues using a VRR-LRR™ analyzer. A confocal HR Evolution (HORIBA, France SAS) Raman system with 532-nm excitation wavelength was also used to collect data for part of the ex vivo samples after they were thawed from - 80 °C for comparison. The preliminary analysis led to the following observations. (1) The intensity ratio of VRR peaks of protein to fatty acid (I2934/I2888) decreased with the increase of meningioma grade. (2) The ratio of VRR peaks of phosphorylated protein to amid I (I1588/I1639) decreased for the higher grade of meningioma. (3) Three RR vibration modes at 1378, 3174, and 3224 cm-1 which were related to the molecular vibrational bands of oxy-hemeprotein, amide B, and amide A protein significantly changed in peak intensities in the two types of meningioma tissues compared to normal tissue. (4) The changes in the intensities of VRR modes of carotenoids at 1156 and 1524 cm-1 were also found in the meningioma boundary. The VRR-LRR™ analyzer demonstrates a new approach for label-free, rapid, and objective identification of primary human meningioma in quasi-clinical settings. The accuracy for detecting meningioma tissues using support vector machines (SVMs) was over 70% based on Raman peaks of key biomolecules and up to 100% using principal component analysis (PCA).
Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico , Meningioma/cirurgia , Análise de Componente Principal , Análise Espectral Raman/métodos , VibraçãoRESUMO
OBJECTIVES: Advances in endoscopic technology, including magnifying and image-enhanced techniques, have been attracting increasing attention for the optical characterization of colorectal lesions. These techniques are being implemented into clinical practice as cost-effective and real-time approaches. Additionally, with the recent progress in endoscopic interventions, endoscopic resection is gaining acceptance as a treatment option in patients with ulcerative colitis (UC). Therefore, accurate preoperative characterization of lesions is now required. However, lesion characterization in patients with UC may be difficult because UC is often affected by inflammation, and it may be characterized by a distinct "bottom-up" growth pattern, and even expert endoscopists have relatively little experience with such cases. In this systematic review, we assessed the current status and limitations of the use of optical characterization of lesions in patients with UC. METHODS: A literature search of online databases (MEDLINE via PubMed and CENTRAL via the Cochrane Library) was performed from 1 January 2000 to 30 November 2021. RESULTS: The database search initially identified 748 unique articles. Finally, 25 studies were included in the systematic review: 23 focused on differentiation of neoplasia from non-neoplasia, one focused on differentiation of UC-associated neoplasia from sporadic neoplasia, and one focused on differentiation of low-grade dysplasia from high-grade dysplasia and cancer. CONCLUSIONS: Optical characterization of neoplasia in patients with UC, even using advanced endoscopic technology, is still challenging and several issues remain to be addressed. We believe that the information revealed in this review will encourage researchers to commit to the improvement of optical diagnostics for UC-associated lesions.
Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Neoplasias , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/cirurgia , Colite Ulcerativa/complicações , Colonoscopia/métodos , Hiperplasia/complicações , Tecnologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/cirurgiaRESUMO
Hyperspectral imaging (HSI) applications for biomedical imaging and dermatological applications have been recently under research interest. Medical HSI applications are non-invasive methods with high spatial and spectral resolution. HS imaging can be used to delineate malignant tumours, detect invasions, and classify lesion types. Typical challenges of these applications relate to complex skin surfaces, leaving some skin areas unreachable. In this study, we introduce a novel spectral imaging concept and conduct a clinical pre-test, the findings of which can be used to develop the concept towards a clinical application. The SICSURFIS spectral imager concept combines a piezo-actuated Fabry-Pérot interferometer (FPI) based hyperspectral imager, a specially designed LED module and several sizes of stray light protection cones for reaching and adapting to the complex skin surfaces. The imager is designed for the needs of photometric stereo imaging for providing the skin surface models (3D) for each captured wavelength. The captured HS images contained 33 selected wavelengths (ranging from 477 nm to 891 nm), which were captured simultaneously with accordingly selected LEDs and three specific angles of light. The pre-test results show that the data collected with the new SICSURFIS imager enable the use of the spectral and spatial domains with surface model information. The imager can reach complex skin surfaces. Healthy skin, basal cell carcinomas and intradermal nevi lesions were classified and delineated pixel-wise with promising results, but further studies are needed. The results were obtained with a convolutional neural network.
Assuntos
Imageamento Hiperespectral , Iluminação , Calibragem , Diagnóstico por Imagem , Redes Neurais de ComputaçãoRESUMO
OBJECTIVE: Clinical trials for osteoarthritis (OA), the leading cause of global disability, are unable to pinpoint the early, potentially reversible disease with clinical technology. Hence, disease-modifying drug candidates cannot be tested early in the disease. To overcome this obstacle, we asked whether early OA-pathology detection is possible with current clinical technology. METHODS: We determined the relationship between two sensitive early OA markers, atomic force microscopy (AFM)-measured human articular cartilage (AC) surface stiffness, and location-matched superficial zone chondrocyte spatial organizations (SCSOs), asking whether a significant loss of surface stiffness can be detected in early OA SCSO stages. We then tested whether current clinical technology can visualize and accurately diagnose the SCSOs using an approved probe-based confocal laser-endomicroscope and a random forest (RF) model. RESULTS: We demonstrated a correlation between AC surface stiffness and the SCSO (rrm = -0.91; 95%CI: -0.97, -0.73), and an extensive loss of surface stiffness specifically in those ACs with early OA-typical SCSO (95%CIs: string SCSO: 269-173 kPa, double string SCSO: 77-46 kPa). This established the SCSO as a visualizable, functionally relevant surrogate marker of early OA AC surface pathology. Moreover, SCSO-based stiffness discrimination worked well in each patient's AC. We then demonstrated feasibility of visualizing the SCSO by clinical laser-endomicroscopy and, importantly, accurate SCSO diagnosis using RF. CONCLUSION: We present the proof-of-concept of early OA-pathology detection with available clinical technology, introducing a future-oriented, AI-supported, non-destructive quantitative optical biopsy for early disease detection. Operationalizing SCSO recognition, this approach allows testing for correlations between local tissue architectures with other experimental and clinical read-outs, but needs clinical validation and a larger sample size for defining diagnostic thresholds.
Assuntos
Cartilagem Articular/patologia , Condrócitos/patologia , Microscopia Intravital/métodos , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos , Osteoartrite do Joelho/patologia , Idoso , Idoso de 80 Anos ou mais , Artroscopia/métodos , Inteligência Artificial , Cartilagem Articular/fisiopatologia , Módulo de Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Estudo de Prova de ConceitoRESUMO
In this study, we performed in vivo diagnosis of skin cancer based on implementation of a portable low-cost spectroscopy setup combining analysis of Raman and autofluorescence spectra in the near-infrared region (800-915 nm). We studied 617 cases of skin neoplasms (615 patients, 70 melanomas, 122 basal cell carcinomas, 12 squamous cell carcinomas and 413 benign tumors) in vivo with a portable setup. The studies considered the patients examined by GPs in local clinics and directed to a specialized Oncology Dispensary with suspected skin cancer. Each sample was histologically examined after excisional biopsy. The spectra were classified with a projection on latent structures and discriminant analysis. To check the classification models stability, a 10-fold cross-validation was performed. We obtained ROC AUCs of 0.75 (0.71-0.79; 95% CI), 0.69 (0.63-0.76; 95% CI) and 0.81 (0.74-0.87; 95% CI) for classification of a) malignant and benign tumors, b) melanomas and pigmented tumors and c) melanomas and seborrhoeic keratosis, respectively. The positive and negative predictive values ranged from 20% to 52% and from 73% to 99%, respectively. The biopsy ratio varied from 0.92:1 to 4.08:1 (at sensitivity levels from 90% to 99%). The accuracy of automatic analysis with the proposed system is higher than the accuracy of GPs and trainees, and is comparable or less to the accuracy of trained dermatologists. The proposed approach may be combined with other optical techniques of skin lesion analysis, such as dermoscopy- and spectroscopy-based computer-assisted diagnosis systems to increase accuracy of neoplasms classification.
Assuntos
Carcinoma Basocelular/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Melanoma/diagnóstico , Processamento de Sinais Assistido por Computador/instrumentação , Neoplasias Cutâneas/diagnóstico , Análise Espectral Raman/métodos , Diagnóstico Diferencial , Humanos , Sensibilidade e Especificidade , Análise Espectral Raman/instrumentaçãoRESUMO
BACKGROUND: Most patients with actinic keratosis (AK) present with more than one lesion. Although histopathological examination is the gold standard for diagnosing this condition, performing an invasive skin biopsy for each AK is impractical. Thus, this study aimed to identify AK's morphological characteristics based on harmonic generation microscopy (HGM). Moreover, the correlation between features observed using HGM and histopathological grading of AK was examined. METHODS: Lesions of seven patients were examined using HGM (n = 1, ex vivo and n = 6, in vivo), and histopathological examinations of the biopsy specimens were also performed. The features of each AK, based on HGM, were assessed and compared with corresponding standard histopathological findings. RESULTS: Using the histopathological findings as a standard reference, HGM's accuracy in detecting features of AK lesions, such as hyperkeratosis, epidermal thinning, abnormal architecture, and atypical honeycomb pattern, was 100%. Approximately five (72%) patients had similar histopathological grades. Moreover, based on HGM, except for one patient with grade 1 AK, six (85.71%) patients had lesions with intraepidermal dendritic cell-like cells, representing melanocytes. CONCLUSION: Harmonic generation microscopy can be used in vivo to provide critical diagnostic information with a resolution comparable to histopathological examination. In addition, intralesional melanocytes in AK, which may be correlated with disease severity, can be specifically enhanced using HGM.
Assuntos
Ceratose Actínica/patologia , Melanócitos/patologia , Microscopia de Geração do Segundo Harmônico , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , TaiwanRESUMO
PURPOSE: In 2016, the European Laryngological Society (ELS) proposed a classification for vascular changes occurring in glottic lesions as visible by narrow band imaging (NBI), based on the dichotomic distinction between longitudinal vessels (not suspicious) and perpendicular ones (suspicious). The aim of our study was to validate this classification assessing the interobserver agreement and diagnostic test performance in detecting the final histopathology. METHODS: A retrospective study was carried out by reviewing clinical charts, preoperative videos, and final pathologic diagnosis of patients submitted to transoral microsurgery for laryngeal lesions in two Italian referral centers. In each institution, two physicians, independently re-assessed each case applying the ELS classification. RESULTS: The cohort was composed of 707 patients. The pathologic report showed benign lesions in 208 (29.5%) cases, papillomatosis in 34 (4.8%), squamous intraepithelial neoplasia (SIN) up to carcinoma in situ in 200 (28.2%), and squamous cell carcinoma (SCC) in 265 (37.5%). The interobserver agreement was extremely high in both institutions (k = 0.954, p < 0.001 and k = 0.880, p < 0.001). Considering the diagnostic performance for identification of at least SIN or SCC, the sensitivity was 0.804 and 0.902, the specificity 0.793 and 0.581, the positive predictive value 0.882 and 0.564, and the negative predictive value 0.678 and 0.908, respectively. CONCLUSION: The ELS classification for NBI vascular changes of glottic lesions is a highly reliable tool whose systematic use allows a better diagnostic evaluation of suspicious laryngeal lesions, reliably distinguishing benign ones from those with a diagnosis of papillomatosis, SIN or SCC, thus paving the way towards confirmation of the optical biopsy concept.
Assuntos
Neoplasias Laríngeas , Imagem de Banda Estreita , Biópsia , Testes Diagnósticos de Rotina , Humanos , Neoplasias Laríngeas/diagnóstico por imagem , Estudos RetrospectivosRESUMO
Light-scattering spectroscopy (LSS) is an established optical approach for characterization of biological tissues. Here, we investigated the capabilities of LSS and convolutional neural networks (CNNs) to quantitatively characterize the composition and arrangement of cardiac tissues. We assembled tissue constructs from fixed myocardium and the aortic wall with a thickness similar to that of the atrial free wall. The aortic sections represented fibrotic tissue. Depth, volume fraction, and arrangement of these fibrotic insets were varied. We gathered spectra with wavelengths from 500-1100 nm from the constructs at multiple locations relative to a light source. We used single and combinations of two spectra for training of CNNs. With independently measured spectra, we assessed the accuracy of the CNNs for the classification of tissue constructs from single spectra and combined spectra. Combined spectra, including the spectra from fibers distal from the illumination fiber, typically yielded the highest accuracy. The maximal classification accuracy of the depth detection, volume fraction, and permutated arrangements was (mean ± standard deviation (stddev)) 88.97 ± 2.49%, 76.33 ± 1.51%, and 84.25 ± 1.88%, respectively. Our studies demonstrate the reliability of quantitative characterization of tissue composition and arrangements using a combination of LSS and CNNs. The potential clinical applications of the developed approach include intraoperative quantification and mapping of atrial fibrosis, as well as the assessment of ablation lesions.
Assuntos
Miocárdio , Redes Neurais de Computação , Fibrose , Humanos , Reprodutibilidade dos Testes , Análise EspectralRESUMO
The possibilities of using optical spectroscopy methods in the differential diagnosis of prostate cancer were investigated. Analytical discrimination models of Raman spectra of prostate tissue were constructed by using the projections onto latent structures data analysis(PLS-DA) method for different wavelengths of exciting radiation-532 and 785 nm. These models allowed us to divide the Raman spectra of prostate cancer and the spectra of hyperplasia sites for validation datasets with the accuracy of 70-80%, depending on the specificity value. Meanwhile, for the calibration datasets, the accuracy values reached 100% for the excitation of a laser with a wavelength of 785 nm. Due to the registration of Raman "fingerprints", the main features of cellular metabolism occurring in the tissue of a malignant prostate tumor were confirmed, namely the absence of aerobic glycolysis, over-expression of markers (FASN, SREBP1, stearoyl-CoA desaturase, etc.), and a strong increase in the concentration of cholesterol and its esters, as well as fatty acids and glutamic acid. The presence of an ensemble of Raman peaks with increased intensity, inherent in fatty acid, beta-glucose, glutamic acid, and cholesterol, is a fundamental factor for the identification of prostate cancer.
Assuntos
Diagnóstico Diferencial , Neoplasias da Próstata/diagnóstico por imagem , Análise Espectral Raman/métodos , Idoso , Biópsia , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-IdadeRESUMO
Optical coherence tomography (OCT) and reflectance confocal laser microscopy (RCM) allow noninvasive imaging diagnostics of the skin. Since the indication for a biopsy in children is generally made cautiously, OCT and KLM can be helpful in the clarification of pediatric skin lesions. In addition, biopsies only represent a snapshot of a small area of the skin, while noninvasive methods allow several locations to be examined over time, so that dynamic changes and the course of therapy can also be determined. In pediatric dermatology, these diagnostic methods are particularly suitable for the clarification of atypical pigment lesions, for infectious dermatoses such as scabies or tinea, and for the diagnosis of inflammatory and degenerative dermatoses.
Assuntos
Dermatologia , Dermatopatias , Criança , Humanos , Microscopia Confocal , Pele/diagnóstico por imagem , Dermatopatias/diagnóstico por imagem , Tomografia de Coerência ÓpticaRESUMO
Minipig skin is one of the most widely used non-rodent animal skin models for dermatological research. A thorough characterization of minipig skin is essential for gaining deeper understanding of its structural and functional similarities with human skin. In this study, three-dimensional (3-D) in vivo images of minipig skin was obtained non-invasively using a multimodal optical imaging system capable of acquiring two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy (FLIM) images simultaneously. The images of the structural features of different layers of the minipig skin were qualitatively and quantitatively compared with those of human skin. Label-free imaging of skin was possible due to the endogenous fluorescence and optical properties of various components in the skin such as keratin, nicotinamide adenine dinucleotide phosphate (NAD(P)H), melanin, elastin, and collagen. This study demonstrates the capability of optical biopsy techniques, such as TPEF and FLIM, for in vivo non-invasive characterization of cellular and functional features of minipig skin, and the optical image-based similarities of this commonly utilized model of human skin. These optical imaging techniques have the potential to become promising tools in dermatological research for developing a better understanding of animal skin models, and for aiding in translational pre-clinical to clinical studies.