Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(16): e2308242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38016066

RESUMO

The next-generation X-ray detectors require novel semiconductors with low material/fabrication cost, excellent X-ray response characteristics, and robust operational stability. The family of organic-inorganic hybrid perovskites (OIHPs) materials comprises a range of crystal configuration (i.e., films, wafers, and single crystals) with tunable chemical composition, structures, and electronic properties, which can perfectly meet the multiple-stringent requirements of high-energy radiation detection, making them emerging as the cutting-edge candidate for next-generation X-ray detectors. From the perspective of molecular dimensionality, the physicochemical and optoelectronic characteristics of OIHPs exhibit dimensionality-dependent behavior, and thus the structural dimensionality is recognized as the key factor that determines the device performance of OIHPs-based X-ray detectors. Nevertheless, the correlation between dimensionality of OIHPs and performance of their X-ray detectors is still short of theoretical guidance, which become a bottleneck that impedes the development of efficient X-ray detectors. In the review, the advanced studies on the dimensionality engineering of OIHPs are critically assessed in X-ray detection application, discussing the current understanding on the "dimensionality-property" relationship of OIHPs and the state-of-the-art progresses on the dimensionality-engineered OIHPs-based X-ray detector, and highlight the open challenges and future outlook of this field.

2.
Small ; 19(16): e2206581, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670076

RESUMO

Organic-inorganic halide perovskites (OIHPs) obtained tremendous attention due to their low cost and excellent properties. However, the stability and toxicity of Pb-based OIHPs (POIHPs), as well as the weakness of efficiency and stability in Sn-based OIHPs (SOIHPs), are still serious issues for commercial application. Notably, composition engineering is an effective and direct strategy for improving these issues along with the control and modification of properties. Recently, the doping strategies for POIHPs and SOIHPs are booming. Based on the relationship between properties and composition, the doping strategies for POIHPs and SOIHPs, aiming to provide a comprehensive review and guidance for the research are systematically summarized. Moreover, the doping strategies for Pb-Sn mixed OIHPs are also discussed. Finally, a brief perspective and conclusion toward future possible doping schemes and properties designment of POIHPs and SOIHPs are offered.

3.
Nanotechnology ; 32(37)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34049300

RESUMO

Organic-inorganic halide perovskites (OHPs) have been proven to possess unique optical and electrical properties, and achieved more extensive application as excellent materials for memristors in recent years. Based on the traditional OHP-based memristors, the intermediate layer of the memristor was prepared using yttrium oxide (Y2O3)/OHP stacking structure in this manuscript. The potential barrier between Y2O3and perovskite is relatively high (ΔEC = 2.13 eV) which leads to comparatively low current of the memristor, thus the power consumption can be reduced. Besides, by changing the external light conditions, one can realize sharp or slow switch between high resistance state (HRS) and low resistance state (LRS), so as to meet the requirement of multilevel data storage, which indicates its promising application prospect in information storage and biological simulation. In addition, based on characteristics of photoelectric coupling, the Y2O3/OHP memristor can also achieve the advantage of adjustable threshold voltage. The transition of HRS and LRS can be realized by changing the illumination condition at any voltage, which means the set and reset voltage are not fixed, so that the memristor with adjustable threshold voltage can adapt to various working conditions.

4.
Adv Mater ; 29(29)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28582597

RESUMO

Organic-inorganic halide perovskite (OHP) materials, for example, CH3 NH3 PbI3 (MAPbI3 ), have attracted significant interest for applications such as solar cells, photodectors, light-emitting diodes, and lasers. Previous studies have shown that charged defects can migrate in perovskites under an electric field and/or light illumination, potentially preventing these devices from practical applications. Understanding and control of the defect generation and movement will not only lead to more stable devices but also new device concepts. Here, it is shown that the formation/annihilation of iodine vacancies (VI 's) in MAPbI3 films, driven by electric fields and light illumination, can induce pronounced resistive switching effects. Due to a low diffusion energy barrier (≈0.17 eV), the VI 's can readily drift under an electric field, and spontaneously diffuse with a concentration gradient. It is shown that the VI diffusion process can be suppressed by controlling the affinity of the contact electrode material to I- ions, or by light illumination. An electrical-write and optical-erase memory element is further demonstrated by coupling ion migration with electric fields and light illumination. These results provide guidance toward improved stability and performance of perovskite-based optoelectronic systems, and can lead to the development of solid-state devices that couple ionics, electronics, and optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA