Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(1): 176-187.e19, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923394

RESUMO

In response to biotic stress, plants produce suites of highly modified fatty acids that bear unusual chemical functionalities. Despite their chemical complexity and proposed roles in pathogen defense, little is known about the biosynthesis of decorated fatty acids in plants. Falcarindiol is a prototypical acetylenic lipid present in carrot, tomato, and celery that inhibits growth of fungi and human cancer cell lines. Using a combination of untargeted metabolomics and RNA sequencing, we discovered a biosynthetic gene cluster in tomato (Solanum lycopersicum) required for falcarindiol production. By reconstituting initial biosynthetic steps in a heterologous host and generating transgenic pathway mutants in tomato, we demonstrate a direct role of the cluster in falcarindiol biosynthesis and resistance to fungal and bacterial pathogens in tomato leaves. This work reveals a mechanism by which plants sculpt their lipid pool in response to pathogens and provides critical insight into the complex biochemistry of alkynyl lipid production.


Assuntos
Di-Inos/metabolismo , Ácidos Graxos/biossíntese , Álcoois Graxos/metabolismo , Solanum lycopersicum/genética , Resistência à Doença/genética , Di-Inos/química , Ácidos Graxos/metabolismo , Álcoois Graxos/química , Regulação da Expressão Gênica de Plantas/genética , Metabolômica , Família Multigênica/genética , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética
2.
EMBO J ; 42(6): e112202, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795015

RESUMO

Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7-deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation.


Assuntos
Ácidos Graxos não Esterificados , Oxilipinas , Humanos , Adipócitos/metabolismo , Autofagia/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/genética , Oxilipinas/metabolismo
3.
J Biol Chem ; 300(6): 107372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754781

RESUMO

OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 µM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 µM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 µM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.


Assuntos
Cardiotônicos , Miócitos Cardíacos , Animais , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/química , Inflamassomos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Lipopolissacarídeos/farmacologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Sirtuína 1/metabolismo , Anti-Inflamatórios/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/química , Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo
4.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806811

RESUMO

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Assuntos
Aspergillus ochraceus , AMP Cíclico , Glucose , Percepção de Quorum , Transdução de Sinais , Aspergillus ochraceus/metabolismo , Aspergillus ochraceus/genética , Glucose/metabolismo , AMP Cíclico/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ocratoxinas/metabolismo
5.
Plant J ; 115(3): 709-723, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37095639

RESUMO

The oxylipin plant hormone (3R,7S)-jasmonoyl-l-isoleucine [or (+)-7-iso-jasmonoyl-l-isoleucine, JA-Ile] is widely recognized as a plant defense hormone against pathogens and chewing insects. The metabolism of JA-Ile into 12-OH-JA-Ile and 12-COOH-JA-Ile is the central mechanism for the inactivation of JA signaling. Recently, 12-OH-JA-Ile was reported to function as a ligand for the JA-Ile co-receptor COI1-JAZ. However, in previous studies, '12-OH-JA-Ile' used was a mixture of four stereoisomers, the naturally occurring cis-isomer (3R,7S)-12-OH-JA-Ile and the trans-isomer (3R,7R)-12-OH-JA-Ile, and the unnatural cis-isomer (3S,7R)-12-OH-JA-Ile and the trans-isomer (3S,7S)-12-OH-JA-Ile. Thus, the genuine bioactive form of 12-OH-JA-Ile has not yet been identified. In the present study, we prepared pure stereoisomers of 12-OH-JA-Ile and identified (3R,7S)-12-OH-JA-Ile as the naturally occurring bioactive form of 12-OH-JA-Ile and found that it binds to COI1-JAZ9 as effectively as (3R,7S)-JA-Ile. In addition, we revealed that the unnatural trans-isomer (3S,7S)-12-OH-JA-l-Ile functions as another bioactive isomer. The pure (3R,7S)-12-OH-JA-Ile causes partial JA-responsive gene expression without affecting the expression of JAZ8/10, which is involved in the negative feedback regulation of JA-signaling. Thus, (3R,7S)-12-OH-JA-Ile could cause weak and sustainable expression of certain JA-responsive genes until the catabolism of (3R,7S)-12-OH-JA-Ile into (3R,7S)-12-COOH-JA-Ile occurs. The use of chemically pure (3R,7S)-12-OH-JA-Ile confirmed the genuine biological activities of '12-OH-JA-Ile' by excluding the possible effects of other stereoisomers. A chemical supply of pure (3R,7S)-12-OH-JA-Ile with an exact bioactivity profile will enable further detailed studies of the unique role of 12-OH-JA-Ile in planta.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Isoleucina , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estereoisomerismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960372

RESUMO

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Assuntos
Basidiomycota , Carpóforos , Proteínas Fúngicas , Filogenia , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/enzimologia , Basidiomycota/genética , Basidiomycota/enzimologia , Basidiomycota/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Agaricales/genética , Agaricales/enzimologia , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/enzimologia
7.
Prostaglandins Other Lipid Mediat ; 170: 106790, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37918556

RESUMO

New biomarkers that are directly associated with canine ovulation would be of value to ensure mating on optimal days of heat. In this study, canine plasma and serum were analyzed with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to quantify a broad range of oxylipins for the purpose of developing a method for biomarker discovery studies in canine reproduction. A majority of the 67 oxylipins probed for were detected at comparable levels in both sample types, but more oxylipins at higher concentrations were detected in serum than in plasma. Nine of the oxylipins were detected in a pilot study of serum at levels that significantly differed (p ≤ 0.1) between time-points before (n = 10), during (n = 10) and after (n = 10) ovulation, and might serve as putative biomarkers for canine ovulation. One oxylipin (20-HETE) was significantly altered after adjusting for multiple comparisons. In conclusion, the results showed that the LC-ESI-MS/MS method was suitable for quantification of canine oxylipins, revealing important similarities and differences between plasma and serum profiles as well as preliminary ovulation-specific changes in a subset of the investigated oxylipins.


Assuntos
Oxilipinas , Espectrometria de Massas em Tandem , Feminino , Animais , Cães , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Projetos Piloto , Cromatografia Líquida , Ovulação , Biomarcadores , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Bioorg Med Chem Lett ; 110: 129886, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38996938

RESUMO

(+)-Plakevulin A (1), an oxylipin isolated from an Okinawan sponge Plakortis sp. inhibits enzymatic inhibition of DNA polymerases (pols) α and δ and exhibits cytotoxicity against murine leukemia (L1210) and human cervix carcinoma (KB) cell lines. However, the half-maximal inhibitory concentration (IC50) value for cytotoxicity significantly differed from those observed for the enzymatic inhibition of pols α and ß, indicating the presence of target protein(s) other than pols. This study demonstrated cytotoxicity against human promyelocytic leukemia (HL60), human cervix epithelioid carcinoma (HeLa), mouse calvaria-derived pre-osteoblast (MC3T3-E1), and human normal lung fibroblast (MRC-5) cell lines. This compound had selectivity to cancer cells over normal ones. Among these cell lines, HL60 exhibited the highest sensitivity to (+)-plakevulin A. (+)-Plakevulin A induced DNA fragmentation and caspase-3 activation in HL60 cells, indicating its role in apoptosis induction. Additionally, hydroxysteroid 17-ß dehydrogenase 4 (HSD17B4) was isolated from the HL60 lysate as one of its binding proteins through pull-down experiments using its biotinylated derivative and neutravidin-coated beads. Moreover, (+)-plakevulin A suppressed the activation of interleukin 6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3). Because the knockdown or inhibition of STAT3 induces apoptosis and HSD17B4 regulates STAT3 activation, (+)-plakevulin A may induce apoptosis in HL60 cell lines by suppressing STAT3 activation, potentially by binding to HSD17B4. The present findings provide valuable information for the mechanism of its action.


Assuntos
Apoptose , Interleucina-6 , Fator de Transcrição STAT3 , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Células HL-60 , Interleucina-6/metabolismo , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade
9.
Ann Nutr Metab ; 80(3): 117-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354712

RESUMO

INTRODUCTION: Oxylipins are mediators of oxidative stress. To characterize the underlying inflammatory processes and phenotype effect of iron metabolism disorders, we investigated the oxylipin profile in hereditary hemochromatosis (HH) and dysmetabolic iron overload syndrome (DIOS) patients. METHODS: An LC-MS/MS-based method was performed to quantify plasma oxylipins in 20 HH and 20 DIOS patients in fasting conditions and 3 h after an iron-rich meal in HH patients. RESULTS: Principal component analysis showed no separation between HH and DIOS, suggesting that the clinical phenotype has no direct impact on oxylipin metabolism. 20-HETE was higher in DIOS and correlated with hypertension (p = 0.03). Different oxylipin signatures were observed in HH before and after the iron-rich meal. Discriminant oxylipins include epoxy fatty acids derived from docosahexaenoic acid and arachidonic acid as well as 13-HODE and 9-HODE. Mediation analysis found no major contribution of dietary iron absorption for 16/22 oxylipins significantly affected by the meal. DISCUSSION: The oxylipin profiles of HH and DIOS seemed similar except for 20-HETE, possibly reflecting different hypertension prevalence between the two groups. Oxylipins were significantly affected by the iron-rich meal, but the specific contribution of iron was not clear. Although iron may contribute to oxidative stress and inflammation in HH and DIOS, this does not seem to directly affect oxylipin metabolism.


Assuntos
Eicosanoides , Hemocromatose , Sobrecarga de Ferro , Ferro da Dieta , Oxilipinas , Humanos , Oxilipinas/sangue , Masculino , Feminino , Hemocromatose/sangue , Hemocromatose/genética , Pessoa de Meia-Idade , Ferro da Dieta/administração & dosagem , Adulto , Eicosanoides/sangue , Sobrecarga de Ferro/sangue , Ácidos Hidroxieicosatetraenoicos/sangue , Espectrometria de Massas em Tandem , Estresse Oxidativo , Análise de Componente Principal , Idoso , Ácidos Linoleicos/sangue , Cromatografia Líquida
10.
Artigo em Inglês | MEDLINE | ID: mdl-38360203

RESUMO

Chemical cues play important roles in mediating ecological interactions. Oxylipins, oxygenated metabolites of fatty acids, are one signalling molecule type that influences the physiology and function of species, suggesting their broader significance in chemical communication within aquatic systems. Yet, our current understanding of their function is restricted taxonomically and contextually making it difficult to infer their ecological significance. Snails and leeches are ubiquitous in freshwater ecosystems worldwide, yet little is known about their oxylipin profiles and the factors that cause their profiles to change. As snails and leeches differ taxonomically and represent different trophic groups, we postulated oxylipin profile differences. For snails, we hypothesized that ontogeny (non-reproductive vs reproductive) and predation (non-infested vs leech-infested) would affect oxylipin profiles. Oxylipins were characterized from water conditioned with the snail Planorbella duryi and leech Helobdella lineata, and included three treatment types (snails, leeches, and leech-infested snails) with the snails consisting of three size classes: small (5-6 mm, non-reproductive) and medium and large (13-14 and 19-20 mm, reproductive). The two species differed in the composition of their oxylipin profiles both in diversity and amounts. Further, ontogeny and predation affected the diversity of oxylipins emitted by snails. Our experimental profiles of oxylipins show that chemical cues within freshwater systems vary depending upon the species emitting the signals, the developmental stage of the species, as well as from ecological interactions such as predation. We also identified some candidates, like 9-HETE and PGE2, that could be explored more directly for their physiological and ecological roles in freshwater systems.


Assuntos
Sanguessugas , Oxilipinas , Animais , Ecossistema , Comportamento Predatório , Caramujos/fisiologia , Água Doce
11.
J Exp Bot ; 74(6): 1990-2004, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575924

RESUMO

Pentyl leafy volatiles (PLV) are C5 volatiles produced from polyunsaturated fatty acids by plant 13-lipoxygenases (13-LOX) in concert with other lipid metabolizing enzymes. Unlike related C6 volatiles (GLV, green leafy volatiles), little is known about the biosynthesis and physiological function of PLV in plants. Zea mays LOX6 (ZmLOX6) is an unusual plant LOX that lacks lipid oxygenation activity but acts as a hydroperoxide lyase hypothesized to be specifically involved in PLV synthesis. We overexpressed ZmLOX6 in Arabidopsis thaliana and established that it indeed produces PLVs. Overexpression of ZmLOX6 caused a mild chlorotic phenotype, and induced a similar phenotype in untransformed Col-0 plants grown in close proximity, suggesting that airborne signals, such as PLVs, are responsible for the phenotype. PLV production, dependency on the substrate from endogenous 13-LOX(s), and likely competition with endogenous 13-oxylipin pathway were consistent with the model that ZmLOX6 functions as a hydroperoxide lyase. The abundance of individual PLVs was differentially affected by ZmLOX6 overexpression, and the new profile indicated that ZmLOX6 had reaction products distinct from endogenous PLV-producing activities in the Arabidopsis host plants. ZmLOX6 overexpression also induced a new hormonal status, which is likely responsible for increased attraction and propagation of aphids, nonetheless improving host plant tolerance to aphid infestation.


Assuntos
Afídeos , Arabidopsis , Animais , Arabidopsis/metabolismo , Afídeos/fisiologia , Zea mays/genética , Plantas , Folhas de Planta/metabolismo , Lipídeos
12.
Mol Biol Rep ; 50(3): 2479-2500, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602705

RESUMO

BACKGROUND: Aromatic rice is characterized by its distinct flavor and fragrance, imparted by more than 200 volatile organic compounds. The desirable trait of aroma relies on the type of the variety, with some varieties exhibiting considerably higher aroma content. This prompted us to undergo an exhaustive study of the aroma-associated biochemical pathways and expression of related genes, encoding the enzymes involved in those pathways in indigenous aromatic rice cultivars. METHODS AND RESULTS: The higher aroma level in aromatic rice varieties was attributed to higher transcript levels of PDH, P5CS, OAT, ODC, DAO and TPI, but lower P5CDH and BADH2, as revealed by comparative expression profiling of genes in 11 aromatic and four non-aromatic varieties. Some of the high-aroma containing varieties exhibited lower expression of SPDS and SPMS genes, concomitant with higher PAO expression. Protein immunoblot analyses showed lesser BADH2 protein accumulation in the aromatic varieties. The involvement of shikimate pathway in aroma formation was justified by higher levels of shikimic and ferulic acids due to higher expression of SK1, SK2 and ARD genes. The aromatic varieties exhibited higher expression of LOX3 and HPL, with higher corresponding enzyme activity, accompanied with lower accumulation of lipid hydroperoxides and higher level of total terpenoids, signifying the role of oxylipin pathway and terpene-related volatiles in aroma formation. The pattern of transcript level and metabolite accumulation followed the same trend in both vegetative (seedling) and reproductive (seed) tissues. Sequence analyses revealed several mutations in the upstream region and different exons and introns of BADH2 in the examined aromatic varieties. The allele specific marker system acted as fingerprint to distinguish the selected aromatic rice varieties. The cleaved amplified polymorphic sequence marker established the absence of any mutation in the 14th exon of BADH2 in the aromatic varieties. CONCLUSION: The present work clearly highlighted the biochemical and molecular-genetic mechanism of differential aroma levels which could be attributed to differential regulation of metabolites and genes, belonging to 2-acetyl-1-pyrroline, shikimate, oxylipin and terpenoid metabolic pathways in the indigenous aromatic rice varieties.


Assuntos
Odorantes , Oryza , Odorantes/análise , Oryza/metabolismo , Oxilipinas/metabolismo , Redes e Vias Metabólicas/genética
13.
Anal Bioanal Chem ; 415(5): 913-933, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36683060

RESUMO

Oxylipins derived from the cyclooxygenase (COX) and lipoxygenase (LOX) pathways of the arachidonic acid (ARA) cascade are essential for the regulation of the inflammatory response and many other physiological functions. Comprehensive analytical methods comprised of oxylipin and protein abundance analysis are required to fully understand mechanisms leading to changes within these pathways. Here, we describe the development of a quantitative multi-omics approach combining liquid chromatography tandem mass spectrometry-based targeted oxylipin metabolomics and proteomics. As the first targeted proteomics method to cover these pathways, it enables the quantitative analysis of all human COX (COX-1 and COX-2) and relevant LOX pathway enzymes (5-LOX, 12-LOX, 15-LOX, 15-LOX-2, and FLAP) in parallel to the analysis of 239 oxylipins with our targeted oxylipin metabolomics method from a single sample. The detailed comparison between MRM3 and classical MRM-based detection in proteomics showed increased selectivity for MRM3, while MRM performed better in terms of sensitivity (LLOQ, 16-122 pM vs. 75-840 pM for the same peptides), linear range (up to 1.5-7.4 µM vs. 4-368 nM), and multiplexing capacities. Thus, the MRM mode was more favorable for this pathway analysis. With this sensitive multi-omics approach, we comprehensively characterized oxylipin and protein patterns in the human monocytic cell line THP-1 and differently polarized primary macrophages. Finally, the quantification of changes in protein and oxylipin levels induced by lipopolysaccharide stimulation and pharmaceutical treatment demonstrates its usefulness to study molecular modes of action involved in the modulation of the ARA cascade.


Assuntos
Lipoxigenases , Oxilipinas , Humanos , Oxilipinas/análise , Ácido Araquidônico , Proteômica , Ciclo-Oxigenase 2
14.
Bioorg Chem ; 131: 106285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450198

RESUMO

The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.


Assuntos
Peróxidos Lipídicos , Oryza , Compostos de Epóxi/metabolismo , Lipoxigenase , Oryza/metabolismo , Oxigênio
15.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768438

RESUMO

Dihomo-γ-linolenic acid (DGLA) has emerged as a significant molecule differentiating healthy and inflamed tissues. Its position at a pivotal point of metabolic pathways leading to anti-inflammatory derivatives or via arachidonic acid (ARA) to pro-inflammatory lipid mediators makes this n-6 polyunsaturated fatty acid (PUFA) an intriguing research subject. The balance of ARA to DGLA is probably a critical factor affecting inflammatory processes in the body. The aim of this narrative review was to examine the potential roles of DGLA and related n-6 PUFAs in inflammatory conditions, such as obesity-associated disorders, rheumatoid arthritis, atopic dermatitis, asthma, cancers, and diseases of the gastrointestinal tract. DGLA can be produced by cultured fungi or be obtained via endogenous conversion from γ-linolenic acid (GLA)-rich vegetable oils. Several disease states are characterized by abnormally low DGLA levels in the body, while others can feature elevated levels. A defect in the activity of ∆6-desaturase and/or ∆5-desaturase may be one factor in the initiation and progression of these conditions. The potential of GLA and DGLA administrations as curative or ameliorating therapies in inflammatory conditions and malignancies appears modest at best. Manipulations with ∆6- and ∆5-desaturase inhibitors or combinations of long-chain PUFA supplements with n-3 PUFAs could provide a way to modify the body's DGLA and ARA production and the concentrations of their pro- and anti-inflammatory mediators. However, clinical data remain scarce and further well-designed studies should be actively promoted.


Assuntos
Ácido 8,11,14-Eicosatrienoico , Ácidos Graxos Ômega-6 , Inflamação , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ácido Araquidônico , Ácidos Graxos Dessaturases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doença Crônica
16.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239856

RESUMO

Lifestyle modifications, including increased physical activity and exercise, are recommended for non-alcoholic fatty liver disease (NAFLD). Inflamed adipose tissue (AT) contributes to the progression and development of NAFLD and oxylipins such as hydroxyeicosatetraenoic acids (HETE), hydroxydocosahexanenoic acids (HDHA), prostaglandins (PEG2), and isoprostanoids (IsoP), which all may play a role in AT homeostasis and inflammation. To investigate the role of exercise without weight loss on AT and plasma oxylipin concentrations in NAFLD subjects, we conducted a 12-week randomized controlled exercise intervention. Plasma samples from 39 subjects and abdominal subcutaneous AT biopsy samples from 19 subjects were collected both at the beginning and the end of the exercise intervention. In the AT of women, a significant reduction of gene expression of hemoglobin subunits (HBB, HBA1, HBA2) was observed within the intervention group during the 12-week intervention. Their expression levels were negatively associated with VO2max and maxW. In addition, pathways involved in adipocyte morphology alterations significantly increased, whereas pathways in fat metabolism, branched-chain amino acids degradation, and oxidative phosphorylation were suppressed in the intervention group (p < 0.05). Compared to the control group, in the intervention group, the ribosome pathway was activated, but lysosome, oxidative phosphorylation, and pathways of AT modification were suppressed (p < 0.05). Most of the oxylipins (HETE, HDHA, PEG2, and IsoP) in plasma did not change during the intervention compared to the control group. 15-F2t-IsoP significantly increased in the intervention group compared to the control group (p = 0.014). However, this oxylipin could not be detected in all samples. Exercise intervention without weight loss may influence the AT morphology and fat metabolism at the gene expression level in female NAFLD subjects.


Assuntos
Treinamento Intervalado de Alta Intensidade , Hepatopatia Gordurosa não Alcoólica , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Tecido Adiposo/metabolismo , Redução de Peso , Expressão Gênica , Fígado/metabolismo
17.
J Bacteriol ; 204(7): e0011422, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35658521

RESUMO

The oxylipin-dependent quorum-sensing system (ODS) of Pseudomonas aeruginosa relies on the production and sensing of two extracellular oxylipins, 10S-hydroxy-(8E)-octadecenoic acid (10-HOME) and 7S,10S-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Here, we implemented a genetic screen of P. aeruginosa strain PAO1 aimed to identify genes required for 10-HOME and 7,10-DiHOME production. Among the 14 genes identified, four encoded previously known components of the ODS and 10 encoded parts of the Xcp type II secretion system (T2SS). We subsequently created a clean xcpQ deletion mutant, which encodes the necessary outer membrane component of Xcp, and found it recapitulated the impaired functionality of the T2SS transposon mutants. Further studies showed that the ΔxcpQ mutant was unable to secrete the oxylipin synthase enzymes across the outer membrane. Specifically, immunoblotting for OdsA, which is responsible for the generation of 10-HOME from oleic acid, detected the enzyme in supernatants from wild-type PAO1 but not ΔxcpQ cultures. Likewise, chromatography of supernatants found that 10-HOME was not in supernatants collected from the ΔxcpQ mutant. Accordingly, diol synthase activity was increased in the periplasm of ΔxcpQ mutant consistent with a stoppage in its transport. Importantly, after exposure of the ΔxcpQ mutant to exogenous 10-HOME and 7,10-DiHOME, the ODS effector genes become active; thus, the sensing component of the ODS does not involve the T2SS. Finally, we observed that Xcp contributed to robust in vitro and in vivo biofilm formation in oleic acid availability- and ODS-dependent manner. Thus, T2SS-mediated transport of the oxylipin synthase enzymes to outside the bacterial cell is required for ODS functionality. IMPORTANCE We previously showed that the ODS of P. aeruginosa produces and responds to oxylipins derived from host oleic acid by enhancing biofilm formation and virulence. Here, we developed a genetic screen strategy to explore the molecular basis for oxylipins synthesis and detection. Unexpectedly, we found that the ODS autoinducer synthases cross the outer membrane using the Xcp type 2 secretion system (T2SS) of P. aeruginosa, and so the biosynthesis of oxylipins occurs extracellularly. T2SS promoted biofilm formation in the presence of oleic acid as a result of ODS activation. Our results identify two new T2SS secreted proteins in P. aeruginosa and reveal a new way by which this important opportunistic pathogen interacts with the host environment.


Assuntos
Sistemas de Secreção Tipo II , Proteínas de Bactérias/metabolismo , Ácido Oleico/metabolismo , Oxilipinas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/metabolismo
18.
J Proteome Res ; 21(12): 2969-2978, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36301320

RESUMO

IgA nephropathy (IgAN) is the most common primary glomerulonephritis and a leading cause of chronic kidney disease. The pathogenic mechanism of IgAN remains largely unknown and thus a specific therapeutic target is lacking. Here, we reported that the cytochrome P450 (CYP) epoxygenase/epoxide hydrolase (EH) axis was activated in the patients and is likely a therapeutic target for IgAN. Specifically, quantitative profiling of the plasma from IgAN patients and healthy controls revealed significant changes in plasma levels of CYP/EH-mediated lipid epoxides and diols. Subsequently, CYP2C8, CYP2C18, CYP2J2, EPHX1, and EPHX2 were found to be significantly increased in whole blood cells at mRNA levels from the IgAN patients when compared with those of healthy controls. Immunohistochemical analysis showed that all five CYPs and two EHs were upregulated in the kidney tissue from IgAN patients when compared with normative renal tissue, but the expression locations of the proteins were different with most of them. Treatment of HK-2 cells with IgA1 increased cell viability, compressed cell apoptosis, and increased the protein levels of CYP2C9, EPHX1, and EPHX2. All the results agreed that CYPs/EHs axis is likely the prophylactic and therapeutic target for IgAN, providing IgAN patients with a new intervention strategy.


Assuntos
Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Citocromo P-450 CYP2J2 , Imunoglobulina A , Sistema Enzimático do Citocromo P-450/genética , Metabolômica
19.
Plant Cell Environ ; 45(4): 1082-1095, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859447

RESUMO

Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this study, the potential of 13(S)-hydroperoxy-(9Z, 11E)-octadecadienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z, 11E, 15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action is investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. The relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.


Assuntos
Peróxidos Lipídicos , Plantas , Membrana Celular/metabolismo , Peróxidos Lipídicos/metabolismo , Percepção , Plantas/metabolismo , Espécies Reativas de Oxigênio
20.
J Exp Bot ; 73(9): 3044-3052, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560188

RESUMO

KODA (9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid) is a plant oxylipin involved in recovery from stress. As an agrichemical, KODA helps maintain crop production under various environmental stresses. In plants, KODA is synthesized from α-linolenic acids via 9-lipoxygenase (9-LOX) and allene oxide synthase (AOS), although the amount is usually low, except in the free-floating aquatic plant Lemna paucicostata. To improve KODA biosynthetic yield in other plants such as Nicotiana benthamiana and Arabidopsis thaliana, we developed a system to overproduce KODA in vivo via ectopic expression of L. paucicostata 9-LOX and AOS. The transient expression in N. benthamiana showed that the expression of these two genes is sufficient to produce KODA in leaves. However, stable expression of 9-LOX and AOS (with consequent KODA production) in Arabidopsis plants succeeded only when the two proteins were targeted to plastids or the endoplasmic reticulum/lipid droplets. Although only small amounts of KODA could be detected in crude leaf extracts of transgenic Nicotiana or Arabidopsis plants, subsequent incubation of the extracts increased KODA abundance over time. Therefore, KODA production in transgenic plants stably expressing 9-LOX and AOS requires specific sub-cellular localization of these two enzymes and incubation of crude leaf extracts, which liberates α-linolenic acid via breakdown of endogenous lipids.


Assuntos
Arabidopsis , Oxilipinas , Arabidopsis/genética , Arabidopsis/metabolismo , Lipoxigenase/genética , Oxilipinas/metabolismo , Extratos Vegetais , Nicotiana/genética , Nicotiana/metabolismo , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA