Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064589

RESUMO

Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators.


Assuntos
Carcinoma Hepatocelular , Inibidor de Quinase Dependente de Ciclina p27 , Neoplasias Hepáticas , Proteínas Quinases Associadas a Fase S , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Regulação para Baixo , Masculino
2.
Cancer Sci ; 114(1): 152-163, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36102493

RESUMO

Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , RNA , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , DNA Mitocondrial , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Proliferação de Células/genética , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Genes Cells ; 27(3): 229-237, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35014130

RESUMO

p27Kip1 is known as a major cyclin-dependent kinase inhibitor and a tumor suppressor, and often functionally hampered at protein level. p27 protein expression levels are frequently low in various cancers and negatively correlated with malignancy of cancer. However, in our previous study, we discovered that p27 overexpression does not inhibit the proliferation of two cancer cell lines due to a functional suppression of p27 by nucleophosmin isoform 1 (NPM1); that is, a qualitative, not quantitative, suppression of p27 function occurs in these cancer cell lines. To clarify the regulation of p27 in several types of cancer, we investigated p27 function in other cancer cell lines, based on proliferation assays in those cell lines carrying doxycycline-inducible p27, and found that MDAH041 cells which express p14ARF, an antagonist of NPM1, show growth inhibition depending on p27 induction. Moreover, to investigate p27 function under anchorage-independent culture conditions, we performed soft agar colony formation assay and observed that the colony formation of some cell lines carrying wild-type p53, a major tumor suppressor, was inhibited depending on p27 induction. These results suggest that p27 function is regulated differentially among cancer cell types under anchorage-dependent and anchorage-independent culture conditions.


Assuntos
Proteína Supressora de Tumor p14ARF , Proteína Supressora de Tumor p53 , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Mol Carcinog ; 62(5): 700-715, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36825757

RESUMO

The asymptomatic nature of cholangiocarcinoma (CCA), particularly during its early stages, in combination with its high aggressiveness and chemoresistance, significantly compromises the efficacy of current therapeutic options, contributing to a dismal prognosis. As a tumor suppressor that inhibits the cell cycle, abnormal cytoplasmic p27kip1 localization is related to chemotherapy resistance and often occurs in various cancers, including CCA. Nevertheless, the underlying mechanism is unclear. SUMOylation, which is involved in regulating subcellular localization and the cell cycle, is a posttranslational modification that regulates p27kip1 activity. Here, we confirmed that UBE2I, as the only key enzyme for SUMOylation, was highly expressed and p27kip1 was downregulated in CCA tissues, which were associated with poor outcomes in CCA. Moreover, UBE2I silencing inhibited CCA cell proliferation, delayed xenograft tumor growth in vivo, and sensitized CCA cells to the chemotherapeutics, which may be due to cell cycle arrest induced by p27kip1 nuclear accumulation. According to the immunoprecipitation result, we found that UBE2I could bind p27kip1, and the binding amount of p27kip1 and SUMO-1 decreased after UBE2I silencing. Moreover, nuclear retention of p27kip1 was induced by UBE2I knockdown and SUMOylation or CRM1 inhibition, further suggesting that UBE2I could cooperate with CRM1 in the nuclear export of p27kip1. These data indicate that UBE2I-mediated SUMOylation is a novel regulatory mechanism that underlies p27kip1 export and controls CCA tumorigenesis, providing a therapeutic option for CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Transporte Ativo do Núcleo Celular , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Animais
5.
Exp Cell Res ; 419(1): 113295, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926659

RESUMO

Among the hallmarks of cholangiocarcinoma (CCA) progression and unresponsiveness to therapy is impaired ubiquitin-dependent degradation of nuclear tumor suppressor protein. In the previous stage, our research group found that as a key tumor suppressor, nuclear dysfunction of p27kip1 is closely related to chemotherapy resistance of CCA, but the specific mechanism is unclear. It was recently shown that p27kip1-driven tumors were strongly dependent on the SUMO pathway. RNF4, as the SUMO-targeted ubiquitin ligase (STUbL), identifies SUMOylated proteins as a substrate through sumo-interacting motifs (SIM) and causes its degradation via the ubiquitin proteasome pathway. Here we described that the expression of RNF4 was upregulated in CCA tissues and related to malignant features. Silencing RNF4 arrested human CCA cells at the G1 phase, which was associated with the upregulation of p27kip1 and the downregulation of its downstream cycle-related proteins. Silencing RNF4 inhibited cell proliferation and migration, increased cell apoptosis, and sensitized CCA cells to treatment of chemotherapeutic drugs in vitro. Immunofluorescence showed that p27kip1 and RNF4 were mainly co-located in the nucleus. Immunoprecipitation and Western blot showed that p27kip1 was a target protein for SUMOylation and high expression of RNF4 decreased the levels of nuclear p27kip1, enhanced the levels of ubiquitinated and SUMOylated p27kip1, indicating that RNF4 could regulate cell cycle progression via recognizing SUMOylated p27kip1 and facilitating its ubiquitination degradation. These data indicate that RNF4-mediated ubiquitination degradation of SUMOylated proteins is a novel regulatory mechanism of p27kip1 dysfunction and CCA tumorigenesis, which provides a potential option for therapeutic intervention of CCA.


Assuntos
Colangiocarcinoma , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Carcinogênese , Ciclo Celular , Humanos , Sumoilação , Ubiquitina , Ubiquitinação
6.
Mol Cell Biochem ; 477(5): 1569-1582, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194732

RESUMO

In the present study, we screened multiple melanoma cell lines for treatment of Apigenin and miRNA expression, also studied the role of miR-512-3p in melanoma. RT-PCR analysis was done for screening miRNA in melanoma cell lines (WM1361B, WM983A, WM1341D, SK-MEL-3, SH-4, SK-MEL-24 and RPMI-7951) compared to normal human epidermal melanocytes. Colony formation assay for cell viability studies, cell cycle by flowcytometry and protein expression by immunoblot analysis. For in vivo analysis tumour xenograft mouse model was created. Immunohistochemistry was done for PCNA positive cells. For expression of miR-512-3p in tumour tissues fluorescence in situ hybridization was done. In silico studies were done by molecular docking studies. The WM1361B and WM983A cell lines showed overexpression of miR-512-3p and increased cell proliferation compared to normal human epidermal melanocytes. Treatment of anti-miR-512-3p to WM1361B and WM983A cells halted cell proliferation and also caused G1-phase arrest. We studied the effect of Apigenin on the expression levels of miR-512-3p and associated molecular targets. Apigenin treatment in WM1361B and WM983A cells showed inhibition in expression of miR-512-3p, arrest of G1 phase of cell cycle, cytotoxicity and revival of p27 Kip1. Apigenin treatment significantly suppressed the growth of WM1361B in tumour induced mice, the activity was associated with decreased levels of miR-512-3p, tumour cell proliferation and increased levels of p27 Kip1 protein. Docking studies confirm potential affinity of Apigenin for p27 Kip1. Apigenin acts as an inhibitor of miR-512-3p by suppressing growth of melanoma both in vitro and in vivo targeting the p27 Kip1 axis.


Assuntos
Melanoma , MicroRNAs , Animais , Apigenina/farmacologia , Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1 , Humanos , Hibridização in Situ Fluorescente , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular
7.
Biol Cell ; 113(12): 507-521, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523154

RESUMO

BACKGROUND: Over 400 million people are diabetic. Type 1 and type 2 diabetes are characterized by decreased functional ß-cell mass and, consequently, decreased glucose-stimulated insulin secretion. A potential intervention is transplantation of ß-cell containing islets from cadaveric donors. A major impediment to greater application of this treatment is the scarcity of transplant-ready ß-cells. Therefore, inducing ß-cell proliferation ex vivo could be used to expand functional ß-cell mass prior to transplantation. Various molecular pathways are sufficient to induce proliferation of young ß-cells; however, aged ß-cells are refractory to these proliferative signals. Given that the majority of cadaveric donors fit an aged demographic, defining the mechanisms that impede aged ß-cell proliferation is imperative. RESULTS: We demonstrate that aged rat (5-month-old) ß-cells are refractory to mitogenic stimuli that otherwise induce young rat (5-week-old) ß-cell proliferation. We hypothesized that this change in proliferative capacity could be due to differences in cyclin-dependent kinase inhibitor expression. We measured levels of p16INK4a , p15INK4b , p18INK4c , p19INK4d , p21CIP1 , p27KIP1 and p57KIP2 by immunofluorescence analysis. Our data demonstrates an age-dependent increase of p27KIP1 in rat ß-cells by immunofluorescence and was validated by increased p27KIP1 protein levels by western blot analysis. Interestingly, HDAC1, which modulates the p27KIP1 promoter acetylation state, is downregulated in aged rat islets. These data demonstrate increased p27KIP1 protein levels at 5 months of age, which may be due to decreased HDAC1 mediated repression of p27KIP1 expression. SIGNIFICANCE: As the majority of transplant-ready ß-cells come from aged donors, it is imperative that we understand why aged ß-cells are refractory to mitogenic stimuli. Our findings demonstrate that increased p27KIP1 expression occurs early in ß-cell aging, which corresponds with impaired ß-cell proliferation. Furthermore, the correlation between HDAC1 and p27 levels suggests that pathways that activate HDAC1 in aged ß-cells could be leveraged to decrease p27KIP1 levels and enhance ß-cell proliferation.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Ciclo Celular , Proteínas de Ciclo Celular , Divisão Celular , Proliferação de Células , Ratos
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142366

RESUMO

p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.


Assuntos
Proteínas de Ciclo Celular , Microglia , Actinas , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Microglia/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163135

RESUMO

The cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27Kip1. At the nuclear level, p27Kip1 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs. In the cytoplasm, diverse functions have been described for p27Kip1, including microtubule remodeling, axonal transport and phagocytosis. In Alzheimer's disease (AD), alterations to cycle events and a purported increase in neurogenesis have been described in the early disease process before significant pathological changes could be detected. However, most neurons cannot progress to complete their cell division and undergo apoptotic cell death. Increased levels of both the p27Kip1 levels and phosphorylation status have been described in AD. Increased levels of Aß42, tau hyperphosphorylation or even altered insulin signals could lead to alterations in p27Kip1 post-transcriptional modifications, causing a disbalance between the levels and functions of p27Kip1 in the cytoplasm and nucleus, thus inducing an aberrant cell cycle re-entry and alteration of extra cell cycle functions. Further studies are needed to completely understand the role of p27Kip1 in AD and the therapeutic opportunities associated with the modulation of this target.


Assuntos
Doença de Alzheimer/patologia , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/química , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/metabolismo , Animais , Humanos
10.
J Neurosci ; 40(13): 2644-2662, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32066583

RESUMO

Yes-associated protein (YAP) transcriptional coactivator is negatively regulated by the Hippo pathway and functions in controlling the size of multiple organs, such as liver during development. However, it is not clear whether YAP signaling participates in the process of the formation of glia scars after spinal cord injury (SCI). In this study, we found that YAP was upregulated and activated in astrocytes of C57BL/6 male mice after SCI in a Hippo pathway-dependent manner. Conditional knockout (KO) of yap in astrocytes significantly inhibited astrocytic proliferation, impaired the formation of glial scars, inhibited the axonal regeneration, and impaired the behavioral recovery of C57BL/6 male mice after SCI. Mechanistically, the bFGF was upregulated after SCI and induced the activation of YAP through RhoA pathways, thereby promoting the formation of glial scars. Additionally, YAP promoted bFGF-induced proliferation by negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Finally, bFGF or XMU-MP-1 (an inhibitor of Hippo kinase MST1/2 to activate YAP) injection indeed activated YAP signaling and promoted the formation of glial scars and the functional recovery of mice after SCI. These findings suggest that YAP promotes the formation of glial scars and neural regeneration of mice after SCI, and that the bFGF-RhoA-YAP-p27Kip1 pathway positively regulates astrocytic proliferation after SCI.SIGNIFICANCE STATEMENT Glial scars play critical roles in neuronal regeneration of CNS injury diseases, such as spinal cord injury (SCI). Here, we provide evidence for the function of Yes-associated protein (YAP) in the formation of glial scars after SCI through regulation of astrocyte proliferation. As a downstream of bFGF (which is upregulated after SCI), YAP promotes the proliferation of astrocytes through negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Activation of YAP by bFGF or XMU-MP-1 injection promotes the formation of glial scar and the functional recovery of mice after SCI. These results suggest that the bFGF-RhoA-YAP-p27Kip1 axis for the formation of glial scars may be a potential therapeutic strategy for SCI patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gliose/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Gliose/genética , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Proteínas de Sinalização YAP
11.
J Cell Mol Med ; 25(8): 4136-4147, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33630417

RESUMO

In recent years, although Immune Checkpoint Inhibitors (ICIs) significantly improves survival both in local advanced stage and advanced stage of non-small cell lung cancer (NSCLC), the objective response rate of ICI monotherapy is still only about 20%. Thus, to identify the mechanisms of ICI resistance is critical to increase the efficacy of ICI treatments. By bioinformatics analysis, we found that the expression of regulator of chromosome condensation 1 (RCC1) in lung adenocarcinoma was significantly higher than that in normal lung tissue in TCGA and Oncomine databases. The survival analysis showed that high expression RCC1 was associated with the poor prognosis of NSCLC. And the expression of RCC1 was inversely related to the number of immune cell infiltration. In vitro, knockdown of RCC1 not only significantly inhibited the proliferation of lung adenocarcinoma cells but also increased the expression levels of p27kip1 and PD-L1, and decreased the expression level of CDK4 and p-Rb. In vivo, knockdown of RCC1 significantly slowed down the growth rate of tumour, and further reduced the volume and weight of tumour model after treated by PD-L1 monoclonal antibody. Therefore, RCC1 could up-regulate the expression level of PD-L1 by regulating p27kip1 /CDK4 pathway and decrease the resistance to ICIs. And this study might provide a new way to increase the efficacy of PD-L1 monoclonal antibody by inhibiting RCC1.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Imunoterapia/métodos , Proteínas Nucleares/antagonistas & inibidores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Animais , Apoptose , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
12.
Cancer Sci ; 112(10): 4234-4245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382727

RESUMO

Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1 , a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Lapatinib/farmacologia , MicroRNAs/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Dasatinibe/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteína Forkhead Box O3/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/efeitos dos fármacos , Análise em Microsséries , Subunidade p50 de NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
13.
Cell Tissue Res ; 384(3): 757-769, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830297

RESUMO

The adult mammalian heart is non-regenerative because cardiomyocytes withdraw from the cell cycle shortly after birth. Embryonic mammalian hearts, in which cardiomyocytes are genetically ablated in a salt-and-pepper-like pattern, regenerate due to compensation by residual cardiomyocytes. To date, it remains unknown whether or how transmural ventricular defects at the looped heart stage regenerate after cryoinjury. We established a cryoablation model in stage 16 chick embryonic hearts. In hearts at 5 h post cryoinjury (hpc), cryoinjury-induced defects were approximately 200 µm in width in the primitive ventricle; thereafter, the defect was filled with mesenchymal cells accumulating between the epicardium and endocardium. The defect began to regress at 4 days post cryoinjury (dpc) and disappeared around 9 dpc. Immunohistochemistry showed that there were no isl1-positive cells in either the scar tissue or residual cardiomyocytes. BrdU incorporation into residual cardiomyocytes was transiently downregulated in association with upregulation of p27 (Kip1), suggesting that cell cycle arrest occurred at G1-to-S transition immediately after cryoinjury. Estimated cell cycle length was examined, and the results showed that the shortest cell cycle length was 18 h at stages 19-23; it increased with development due to elongation of the G2-M-G1 phase and 30 h at stages 27-29. The S phase length was constant at 6-8 h. The cell cycle length was elongated immediately after cryoinjury, and it reversed at 1-2 dpc. Cryoablated transmural defects in the early embryonic heart were restored by compensation by residual myocytes.


Assuntos
Miocárdio , Miócitos Cardíacos , Regeneração , Animais , Ciclo Celular , Proliferação de Células , Embrião de Galinha , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
14.
FASEB J ; 34(4): 5193-5207, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067276

RESUMO

One of the critical regulatory mechanisms for cell cycle progression is the timely degradation of CDK inhibitors, including p21Cip1 and p27Kip1 . VCP/p97, an AAA-ATPase, is reported to be overexpressed in many types of cancers. Here, we found that treatment of MCF-7 human breast cancer cells with DBeQ, a VCP inhibitor, or VCP knockdown in MCF-7 cells arrested cells at G1 phase, accompanied with the blockage of both p21 and p27 degradation. Whereas, double knockdown of p21 and p27 in MCF-7 cells rendered cells refractory to DBeQ-induced G1 arrest. Moreover, inhibition or knockdown of VCP or UFD1, one of VCP's co-factors, in MCF-7, NIH3T3, or HEK293T cells blocked the nuclear export of p27 during earlier G1 phase after mitogen stimulation. We also identified the nuclear localization sequence (NLS) of VCP, and found that adding back wild-type VCP, not the NLS-deleted VCP mutant, restored the nuclear export and degradation of p27 in VCP knockout MCF-7 cells. Importantly, we found that VCP inhibition sensitized breast cancer cells to the treatment of several anticancer therapeutics both in vitro and in vivo. Taken together, our study not only uncovers the mechanisms underlying VCP-mediated cell proliferation control but also provides potential therapeutic option for cancer treatment.


Assuntos
Transporte Ativo do Núcleo Celular , Neoplasias da Mama/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1 , Fase S , Proteína com Valosina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteólise , Células Tumorais Cultivadas , Proteína com Valosina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Microbiol ; 22(11): e13242, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32596986

RESUMO

Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-ß and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-ß and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Regulação para Cima , Proteínas não Estruturais Virais/metabolismo , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia , Replicação Viral
16.
Cell Commun Signal ; 19(1): 34, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722247

RESUMO

Prostate cancer (PCa) is one of the most commonly diagnosed human cancers in males. Nearly 191,930 new cases and 33,330 new deaths of PCa are estimated in 2020. Androgen and androgen receptor pathways played essential roles in the pathogenesis of PCa. Androgen depletion therapy is the most used therapies for primary PCa patients. However, due to the high relapse and mortality of PCa, developing novel noninvasive therapies have become the focus of research. Melatonin is an indole-like neurohormone mainly produced in the human pineal gland with a prominent anti-oxidant property. The anti-tumor ability of melatonin has been substantially confirmed and several related articles have also reported the inhibitory effect of melatonin on PCa, while reviews of this inhibitory effect of melatonin on PCa in recent 10 years are absent. Therefore, we systematically discuss the relationship between melatonin disruption and the risk of PCa, the mechanism of how melatonin inhibited PCa, and the synergistic benefits of melatonin and other drugs to summarize current understandings about the function of melatonin in suppressing human prostate cancer. We also raise several unsolved issues that need to be resolved to translate currently non-clinical trials of melatonin for clinic use. We hope this literature review could provide a solid theoretical basis for the future utilization of melatonin in preventing, diagnosing and treating human prostate cancer. Video abstract.


Assuntos
Melatonina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Apoptose/efeitos dos fármacos , Humanos , Masculino , Melatonina/efeitos adversos , Melatonina/farmacologia , Modelos Biológicos , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Neurochem Res ; 46(12): 3123-3134, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34403064

RESUMO

p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1ß and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.


Assuntos
Produtos do Gene tat/administração & dosagem , Inflamação/imunologia , Doença dos Neurônios Motores/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Isquemia do Cordão Espinal/complicações , alfa-Sinucleína/antagonistas & inibidores , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidação de Lipídeos , Masculino , Doença dos Neurônios Motores/etiologia , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Coelhos , Espécies Reativas de Oxigênio/metabolismo
18.
Biol Pharm Bull ; 44(4): 507-514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790102

RESUMO

Preeclampsia (PE) is a severe pregnancy-specific complication responsible for a majority of maternal and fetal mortality. The dysfunction of trophoblast cells is known to be associated with the etiology of PE. Moreover, elevated expression of hsa_circ_0001326 was found in patients with PE without elucidating specific mechanisms. Thus, this study aimed to investigate the role of hsa_circ_0001326 in the dysfunction of trophoblast cells in vitro. Human trophoblast SWAN71 cells were used in this study. Cell proliferation, apoptosis and cell cycle were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, cell counting kit-8 assay, Annexin V/propidium iodide (PI) staining and flow cytometry, respectively. Dual luciferase assay was performed to validate the predicted targets. Additionally, Western blot was conducted for protein detection. The results indicated overexpression (OE) of hsa_circ_0001326 remarkably decreased the viability and proliferation of SWAN71 cells. MiR-186-5p was identified as the target of hsa_circ_0001326. Meanwhile, p27 Kip1 was validated as the target of hsa_miR-186-5p. Moreover, the increased apoptosis and decreased migration induced by hsa_circ_0001326 OE were inhibited by p27 Kip1 knockdown. Hsa_circ_0001326 OE upregulated p27 Kip1 and cleaved caspase3 and downregulated CDK2 and cyclin E1 in cells, while these phenomena were reversed by p27 Kip1 knockdown. In addition, hsa_circ_0001326 OE induced G0/G1 cell cycle arrest was also attenuated in the presence of p27 Kip1 knockdown. Taken together, hsa_circ_0001326 OE contributed to the decreased viability of SWAN71 cells by targeting miR-186-5p via upregulation of p27 Kip1. Our findings were helpful to uncover the pathophysiological process of PE, as well as inspire the development of novel targeted therapy against PE.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , MicroRNAs , RNA Circular , Linhagem Celular , Fenômenos Fisiológicos Celulares , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas Oncogênicas/metabolismo , Regulação para Cima
19.
Molecules ; 26(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572896

RESUMO

The search for novel anti-cancer compounds which can circumvent chemotherapeutic drug resistance and limit systemic toxicity remains a priority. 2-Ethyl-3-O-sulphamoyl-estra-1,3,5(10)15-tetraene-3-ol-17one (ESE-15-one) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16) are sulphamoylated 2-methoxyestradiol (2-ME) analogues designed by our research team. Although their cytotoxicity has been demonstrated in vitro, the temporal and mechanistic responses of the initiated intracellular events are yet to be determined. In order to do so, assays investigating the compounds' effects on microtubules, cell cycle progression, signalling cascades, autophagy and apoptosis were conducted using HeLa cervical- and MDA-MB-231 metastatic breast cancer cells. Both compounds reversibly disrupted microtubule dynamics as an early event by binding to the microtubule colchicine site, which blocked progression through the cell cycle at the G1/S- and G2/M transitions. This was supported by increased pRB and p27Kip1 phosphorylation. Induction of apoptosis with time-dependent signalling involving the p-JNK, Erk1/2 and Akt/mTOR pathways and loss of mitochondrial membrane potential was demonstrated. Inhibition of autophagy attenuated the apoptotic response. In conclusion, the 2-ME analogues induced a time-dependent cross-talk between cell cycle checkpoints, apoptotic signalling and autophagic processes, with an increased reactive oxygen species formation and perturbated microtubule functioning appearing to connect the processes. Subtle differences in the responses were observed between the two compounds and the different cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Estrona/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/genética , Autofagia/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Estrenos/farmacologia , Estrona/análogos & derivados , Estrona/química , Feminino , Células HeLa , Humanos , Microtúbulos/química , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Neoplasias do Colo do Útero/patologia
20.
Med Res Rev ; 40(5): 1920-1949, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32391596

RESUMO

The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Proteínas Quinases Associadas a Fase S/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA