Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250752

RESUMO

Colletotrichum brevisporum is an important fungal pathogen that causes anthracnose and has led to serious postharvest losses of papaya (Carica papaya L.) fruit in recent years. WRKY transcription factors play vital roles in regulating plant resistance to pathogens, but their functions in papaya anthracnose resistance need further exploration. In this study, we identified a WRKY transcription factor, CpWRKY50, which belongs to the WRKY IIc subfamily. During infection with C. brevisporum, expression of CpWRKY50 in anthracnose-resistant papaya cultivars was significantly higher than that in susceptible cultivars. CpWRKY50 was induced by methyl jasmonate, and CpWRKY50 localized in the nucleus. In yeast, full-length CpWRKY50 had transactivation activity, but CpWRKY50 variants truncated at the N or C termini did not. CpWRKY50 positively regulated papaya resistance to C. brevisporum, as demonstrated by transient overexpression of CpWRKY50 in papaya and heterologous expression of CpWRKY50 in tomato. Moreover, endogenous jasmonic acid (JA) and JA-isoleucine levels in the fruits of transgenic tomato OE lines were higher than in wild type both before and after inoculation with C. brevisporum, indicating that increased CpWRKY50 expression promotes JA accumulation. Furthermore, our results revealed CpWRKY50 directly binds to W-box motifs (TTGACC) in the promoters of two JA signaling-related genes, CpMYC2 and pathogenesis-related 4 CpPR4, thereby activating their expression. Our data support that CpWRKY50 positively regulates anthracnose resistance in papaya by promoting JA signaling. These results broaden our understanding of papaya disease resistance mechanisms and will facilitate the genetic improvement of papaya through molecular breeding.

2.
BMC Plant Biol ; 24(1): 68, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262956

RESUMO

BACKGROUND: Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS: Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION: This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.


Assuntos
Carica , Quitosana , Ciclopropanos , Compostos Organofosforados , Frutas , Filogenia , Ácido Ascórbico
3.
Mol Biol Rep ; 51(1): 981, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269576

RESUMO

Papaya ringspot virus (PRSV) is a catastrophic disease that causes huge yield losses in papaya cultivation around the world. Yield losses in severely infected plants can be upto 100%. Because of this disease, papaya cultivation has been shifted to other crops in some areas of the world. Many conventional methods and breeding approaches are used against this disease, which turns out to be less effective. Considering the yield loss caused by PRSV in papaya, it is high time to focus on alternative control methods. To implement effective management strategies, molecular approaches such as Marker Assisted Breeding (MAS) or transgenic methods involving post-transcriptional gene silencing targeting the genome viz., coat protein, replicase gene, or HC Pro can be pursued. However, the public's reluctance to widely accept the transgenic approach due to health and environmental concerns necessitates a consideration of non-transgenic alternatives. Prioritizing safety and ensuring efficient virus control, non-transgenic approaches which encompass cross-protection, genome editing, and topical applications of dsRNA to induce gene silencing within the host, can be adopted. This review aims to provide comprehensive insights of various molecular tools used in managing PRSV which in turn will help in sustainable agriculture.


Assuntos
Carica , Doenças das Plantas , Potyvirus , Carica/virologia , Carica/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Potyvirus/genética , Potyvirus/patogenicidade , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal/métodos , Resistência à Doença/genética , Edição de Genes/métodos , Proteínas do Capsídeo/genética , Inativação Gênica
4.
Bioprocess Biosyst Eng ; 47(1): 65-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086975

RESUMO

This study describes an effective and eco-friendly approach to the synthesis of zinc oxide nanoparticles (ZnONPs) utilizing papaya fruit peel extract (PPE). The structural evaluation and morphological features of synthesized ZnONPs were examined using various physicochemical analyses. The formulated ZnONPs were spherical to hexagonal in shape with ⁓ 170 nm in diameter. ZnONPs exhibited improved antioxidant potential in terms of DPPH radical scavenging activity (IC50 = 98.74 µg/ml) and ferric-reducing potential compared with PPE. The antibacterial activity of ZnONPs was measured against pathogenic strains of Salmonella typhi, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The biosynthesized ZnONPs showed potential antibacterial efficacy against all microbes. In addition, ZnONPs exhibited potential photocatalytic activity in rhodamine B degradation in the presence of sunlight. The results indicated that papaya peels, which are these fruit wastes, could be helpful for the green synthesis of ZnONPs with good dose-responsive antioxidant, antibacterial, and photocatalytic activities.


Assuntos
Carica , Nanopartículas Metálicas , Óxido de Zinco , Antioxidantes/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli , Extratos Vegetais/química
5.
Drug Dev Ind Pharm ; : 1-13, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530403

RESUMO

Objective: This research aimed to investigate the application of the coaxial electrospun method for the production of natural extracts (papaya leaf extract) fibre films. This was achieved through utilising different polymers and with a focus on the conductivity and the viscosity of polymer solutions as critical parameters to generate successful fibres.Significance: Electrospinning is a promising trending manufacturing method for incorporating thermolabile herbal extracts using coaxial electrospun features. However, the complexity of the electrospinning process and the feasibility of the product required precise scrutiny.Methods: The electrospinning solution parameters (conductivity and viscosity) were evaluated by employing various ratios of Eudragit L100 (EL100) and Eudragit L100-55 (EL100-55) pre-spinning polymeric blend solutions. The electrospinning process and ambient parameters were optimised. Following that, the in-silico physicochemical properties of phytochemical marker, rutin, were illustrated using SwissADME web tool. Both freeze-dried Carica papaya leaf extract and its produced films were characterised using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarised light microscopy, and X-ray Powder Diffraction (XRPD).Results: The optimal values of conductivity (≈40-44 × 10-4 S/m) and viscosity (≈32-42 × 10-3 Pa·s) were determined for producing evenly distributed and small fibre diameters in SEM images. These parameters significance was highlighted in acquiring and maintaining adequate tangential stress for fibre elongation, which would consequently affect the morphology and diameter of the fibres formed.Conclusion: In conclusion, the solution, process, and ambient parameters are significant in developing natural extracts into films via electrospinning technology, and this includes the promising Carica papaya leaf extract films produced by coaxial electrospinning.

6.
Prep Biochem Biotechnol ; 54(7): 882-895, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38170207

RESUMO

In growing plant population, effect of stress is a perturb issue affecting its physiological, biochemical, yield loss and developmental growth. Protein-L-isoaspartate-O-methyltransferase (PIMT) is a broadly distributed protein repair enzyme which actuate under stressful environment or aging. Stress can mediate damage converting protein bound aspartate (Asp) residues to isoaspartate (iso-Asp). This spontaneous and deleterious conversion occurs at an elevated state of stress and aging. Iso-Asp formation is associated with protein inactivation and compromised cellular survival. PIMT can convert iso-Asp back to Asp, thus repairing and contributing to cellular survival. The present work describes the isolation, cloning, sequencing and expression of PIMT genes of Carica papaya (Cp pimt) and Ricinus communis (Rc pimt) Using gene specific primers, both the pimts were amplified from their respective cDNAs and subsequently cloned in prokaryotic expression vector pProEXHTa. BL21(DE3) strain of E. coli cells were used as expression host. The expression kinetics of both the PIMTs were studied with various concentrations of IPTG and at different time points. Finally, the PIMT supplemented BL21(DE3) cells were evaluated against different stresses in comparison to their counterparts with the empty vector control.


Assuntos
Carica , Proteínas de Plantas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Ricinus , Carica/genética , Carica/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Estresse Fisiológico
7.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611765

RESUMO

The color of the pericarp is a crucial characteristic that influences the marketability of papaya fruit. Prior to ripening, normal papaya exhibits a green pericarp, whereas the cultivar 'Zihui' displays purple ring spots on the fruit tip, which significantly affects the fruit's visual appeal. To understand the mechanism behind the formation of purple pericarp, this study performed a thorough examination of the transcriptome, plant hormone, and metabolome. Based on the UPLC-ESI-MS/MS system, a total of 35 anthocyanins and 11 plant hormones were identified, with 27 anthocyanins and two plant hormones exhibiting higher levels of abundance in the purple pericarp. In the purple pericarp, 14 anthocyanin synthesis genes were up-regulated, including CHS, CHI, F3H, F3'5'H, F3'H, ANS, OMT, and CYP73A. Additionally, through co-expression network analysis, three MYBs were identified as potential key regulators of anthocyanin synthesis by controlling genes encoding anthocyanin biosynthesis. As a result, we have identified numerous key genes involved in anthocyanin synthesis and developed new insights into how the purple pericarp of papaya is formed.


Assuntos
Carica , Carica/genética , Antocianinas , Reguladores de Crescimento de Plantas , Transcriptoma , Espectrometria de Massas em Tandem , Metaboloma , Verduras
8.
J Sci Food Agric ; 104(10): 6045-6052, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445761

RESUMO

BACKGROUND: Papaya, a highly nutritious and economically significant fruit, is susceptible to infections caused by phytopathogenic fungi. Cinnamon essential oil, derived from Cinnamomum cassia (CC), shows promise in preserving papaya due to its antifungal properties. However, CC is volatile, sensitive to environmental factors, and carries a strong aroma. γ-Cyclodextrin (γ-CD) is known for encapsulating hydrophilic molecules, shielding them from environmental influences, reducing odor, and enabling controlled release due to its unique channel structure. This study aimed to tackle these challenges by preparing and characterizing an inclusion complex of CC with γ-CD (CC-γ-CD), and subsequently evaluating its efficacy in preserving papaya fruits. RESULTS: Analyses, including Fourier-infrared, powder X-ray diffraction, thermal gravity analysis, differential scanning calorimeter, and scanning electron microscopy, revealed successful encapsulation of CC components within the γ-CD cavity. Evaluations of the CC-γ-CD complex's impact on papaya fruit shelf life and quality showed notable enhancements. Fruits treated with CC-γ-CD inclusion complex at a dose of 10 g kg-1 exhibited a 55% extension in shelf-life, evidenced by reduced disease severity index compared with untreated fruit in the same storage conditions. Detailed physicochemical and bromatological assessments highlighted significant improvements, particularly in fruit treated with CC-γ-CD inclusion complex at a dose of 10 g kg-1. CONCLUSION: The application of CC-γ-CD inclusion complex at 10 g kg-1 extended the shelf-life of papaya fruit, significantly and markedly improved the overall quality. These findings underscore the potential of the CC-γ-CD inclusion complex as an effective preservative for papaya, offering a promising solution for its postharvest management and marketability. © 2024 Society of Chemical Industry.


Assuntos
Carica , Cinnamomum zeylanicum , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Óleos Voláteis , gama-Ciclodextrinas , Carica/química , Frutas/química , Frutas/microbiologia , Conservação de Alimentos/métodos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , gama-Ciclodextrinas/química , gama-Ciclodextrinas/farmacologia , Cinnamomum zeylanicum/química , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química
9.
Compr Rev Food Sci Food Saf ; 23(3): e13359, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38720571

RESUMO

The recent increase in the harvesting and industrial processing of tropical fruits such as pineapple and papaya is leading to unavoidable amounts of byproducts rich in valuable compounds. Given the significance of the chemical composition of these byproducts, new research avenues are opening up to exploit them in the food industry. In this sense, the revalorization of pineapple and papaya byproducts is an emerging trend that is encouraging the full harnessing of these tropical fruits, offering the opportunity for developing innovative value-added products. Therefore, the main aim of this review is to provide an overview of the state of the art of the current valorization applications of pineapple and papaya byproducts in the field of food industry. For that proposal, comprehensive research of valorization applications developed in the last years has been conducted using scientific databases, databases, digital libraries, and scientific search engines. The latest valorization applications of pineapple and papaya byproducts in the food industry have been systematically revised and gathered with the objective of synthesizing and critically analyzing existing scientific literature in order to contribute to the advancement of knowledge in the field of tropical byproduct revalorization providing a solid foundation for further research and highlighting scientific gaps and new challenges that should be addressed in the future.


Assuntos
Ananas , Carica , Frutas , Carica/química , Ananas/química , Frutas/química , Indústria Alimentícia , Manipulação de Alimentos/métodos
10.
Fish Physiol Biochem ; 50(3): 1047-1064, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367083

RESUMO

This study was designed to determine the effects of papaya peel extract (PPE) supplementation on the growth and immunophysiological responses of rohu fingerlings at different stocking densities. In this study, three isonitrogenous (307.2-309.8 g kg-1 protein) and isocaloric diets (16.10-16.16 MJ digestible energy kg-1) were prepared using three different inclusion levels (0, 5, and 10 g kg-1) of PPE. Four hundred and five rohu fingerlings (mean weight: 4.24 g ± 0.12) were randomly distributed into nine treatment groups in triplicates viz. low (10nos 75 L-1 or ≈ 0.565 kg/m3), medium (15nos 75 L-1 or ≈ 0.848 kg/m3), and high (20nos 75 L-1 or ≈ 1.13 kg/m3) following a completely randomized design. The study found that increasing stocking density negatively affected fish growth indices, such as weight gain percentage (WG%), feed efficiency ratio (FER), specific growth rate (SGR) and survival. In contrast, dietary PPE supplementation improved growth indices and survival (p < 0.05). We also observed that aminotransferase, lactate (LDH), and malate dehydrogenase (MDH) activity increased with stocking density, whereas 5 and 10 g kg-1 PPE supplementation reduced LDH and MDH activity (p < 0.05). PPE supplementation positively affected serum indices, decreased glucose levels, and increased respiratory burst activity (p < 0.05). Interferon-gamma (IFN-γ) expression was highest in the low- and medium-stocking density groups fed with 5 g kg-1 PPE, which also increased total immunoglobulin and myeloperoxidase activity while decreasing malondialdehyde concentration (p < 0.05). The results revealed that 5 g kg-1 dietary PPE supplementation could be used as a growth promoter and immunostimulant to improve immuno-physiological responses at low and medium stocking densities.


Assuntos
Ração Animal , Carica , Cyprinidae , Dieta , Suplementos Nutricionais , Extratos Vegetais , Animais , Carica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Cyprinidae/imunologia , Cyprinidae/crescimento & desenvolvimento , Aglomeração , Estresse Fisiológico/efeitos dos fármacos
11.
Environ Geochem Health ; 46(9): 334, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060662

RESUMO

This study successfully synthesized ZnO-CuO nanocomposite using the hydrothermal method with Carica papaya leaf extract. The incorporation of the leaf extract significantly enhanced the nanocomposite properties, a novel approach in scientific research. Characterization techniques, including X-ray diffraction, Fourier Transmission Infrared spectroscopy, and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis, confirmed a cubic crystal structure with an average size of 22.37 nm. The Fourier Transmission Infrared spectrum revealed distinctive vibrations at 627, 661, and 751 cm-1 corresponding to ZnO-CuO nanocomposite corresponding to stretching and vibration modes. SEM images confirmed a cubic-like and irregular structure. The nanocomposite exhibited outstanding photocatalytic activity, degrading methylene blue dye by 96.73% within 120 min under visible light. Additionally, they showed significant antimicrobial activity, inhibiting Staphylococcus aureus (20 mm) and Klebsiella pneumonia (17 mm). The results highlight the efficiency of Carica papaya leaf-derived ZnO-CuO nanocomposite for environmental and health challenges.


Assuntos
Antibacterianos , Carica , Cobre , Nanocompostos , Extratos Vegetais , Folhas de Planta , Purificação da Água , Óxido de Zinco , Carica/química , Folhas de Planta/química , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Cobre/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Purificação da Água/métodos , Staphylococcus aureus/efeitos dos fármacos , Azul de Metileno/química , Azul de Metileno/farmacologia , Química Verde/métodos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Difração de Raios X
12.
Trop Anim Health Prod ; 56(2): 84, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386155

RESUMO

The study aimed to evaluate the effects of Carica papaya peel meal-based diet on spermiogram and reaction time in rabbit bucks. Ripe pawpaw fruits were harvested during the dry season. The peels were carefully removed from the pulp and sun-dried for a week. Afterward, they were ground and included in the test diets as pawpaw peel meal (PPM) at inclusion rates of 0%, 15%, and 30%. Rabbit bucks (n = 15) were randomly separated into three groups of five bucks and labeled as groups A, B, and C. Group A, the control group (0%), was fed the basal protein diet (BD), group B (PPM 15) was given a PPM-based diet (15%), while C (PPM 30) was given diet composed of PPM (30%). Semen samples were collected and evaluated fortnightly for 14 weeks. The reaction time and mean ejaculate volume were lower (P < 0.05) in the treatment groups than in the control. Sperm motility and concentration decreased significantly (P < 0.05) across the groups from week 4 to the end of the experiment. Bucks fed PPM 15%, and PPM 30% had significantly (P < 0.05) higher percentages of dead sperm cells and total spermatozoa abnormalities. The control had (86%) normal spermatozoa morphology while those of PPM 15% and PPM 30% were (61%) and (52%), respectively. PPM 30% had the highest abnormal spermatozoa (47%) compared to PPM 15% (38%) and control (13%). The findings indicate that pawpaw peels up to 15% and 30% in the diet have a negative effect on spermiogram.


Assuntos
Asimina , Carica , Masculino , Animais , Coelhos , Tempo de Reação , Motilidade dos Espermatozoides , Sementes , Dieta/veterinária , Verduras
13.
Trop Anim Health Prod ; 56(4): 134, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642256

RESUMO

Successful breeding depends on feeding. The present study aims to evaluate the Carica papaya seed effect on the growth performance of rabbits. The zootechnical parameters studied are weight growth, average daily gain, Feed Conversion Ratio, and carcass characteristics of kits. The experiment was conducted on 48 rabbits, divided into 4 groups, for 6 weeks. Forty-eight rabbits were divided into four (04) groups of 3 repetitions of 4 rabbits. The animals were fed diets containing various levels of papaya seed powder at variable contents: 0% (group T0), 4% (group T1), 6% (group T2), and 8% (group T3). At the end of the experiment, three animals were slaughtered in each animal group to assess the quality of the carcasses and organs. 6% of the seeds of Carica papaya significantly improved (p < 0.05) the average daily gain of the kits: T2 (22.40 g / d) compared to the T0 group (11.32 g / d), T1 (12.20 g / d) and T3 (17.53 g / d). The best Feed Conversion Ratio (0.80) was recorded in the animals of group T2. In contrast, the highest carcass yield was recorded in the rabbits of group T3 (62.70%). In conclusion, 6% was optimal in the feed rations of fattened rabbits to improve production performance. Breeders can consider the benefits of introducing Carica papaya seeds into the rabbits' diet.


Assuntos
Carica , Coelhos , Animais , Melhoramento Vegetal , Sementes , Dieta/veterinária , Ração Animal
14.
Shokuhin Eiseigaku Zasshi ; 65(3): 61-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034137

RESUMO

Since the establishment of procedures for the safety assessment of food products that use recombinant DNA technology, the manufacture, import, and sale of genetically modified (GM) foods that have not undergone safety assessment are prohibited under the Food Sanitation Act. Therefore, a performance study to confirm the GM food testing operations of each laboratory is very important to ensure the reliability of the GM food monitoring system. In 2022, GM papaya line PRSV-YK-which has not yet been authorized in Japan-was selected for testing, and a papaya paste and a DNA solution were used as the test samples. With these samples, a laboratory performance study of the DNA extraction and real-time PCR operations was conducted. This confirmed that the 18 participating laboratories were generally performing the DNA extraction and real-time PCR operations correctly. However, some laboratories using certain DNA amplification reagent with some real-time PCR instruments were not able to determine the PRSV-YK detection test. This suggests that the PRSV-YK detection test may not be able to correctly detect samples containing GM papaya when performed with these combinations of instruments and reagent. In order to ensure the reliability of the PRSV-YK detection test, it is necessary to examine in detail how the combination of DNA polymerase reagents and real-time PCR instruments affects the detection limit, and to implement an appropriate solution.


Assuntos
Carica , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas , Carica/genética , DNA de Plantas/genética , DNA de Plantas/análise , Análise de Alimentos/métodos , Inocuidade dos Alimentos , Japão , Plantas Geneticamente Modificadas/genética , Potyvirus/genética , Potyvirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes
15.
Shokuhin Eiseigaku Zasshi ; 65(3): 67-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034138

RESUMO

In the Japanese official detection method for unauthorized genetically modified (GM) papayas, one of two types of real-time PCR reagents with DNA polymerase (TaqMan Gene Master Mix [TaqMan Gene] or FastGene QPCR Probe Mastermix w/ROX [FastGene]) is primarily used for measurement. In 2022, we conducted a laboratory performance study on the unauthorized GM papaya line PRSV-YK, and the results revealed that high threshold cycle (Cq) values for the PRSV-YK detection test were obtained using TaqMan Gene with the 7500 Fast & 7500 Real-Time PCR System (ABI7500) and QuantStudio 12K Flex (QS12K), indicating the possibility of false negatives. The possibility of similar problems with all unauthorized GM papaya lines detection tests needs to be evaluated. In this study, we performed detection tests on unauthorized GM papaya lines (PRSV-YK, PRSV-SC, and PRSV-HN), the cauliflower mosaic virus 35S promotor (CaM), and a papaya positive control (Chy), and examined how the limits of detection (LOD) for each test are affected by two types of DNA polymerases (TaqMan Gene and FastGene) and three types of real-time PCR instruments (ABI7500, QS12K, and LightCycler 480 Instrument II [LC480]). In the PRSV-YK and PRSV-SC detection tests using ABI7500 and QS12K, measurement with TaqMan Gene showed a higher LOD than FastGene. In this case, an exponential amplification curve was confirmed on the amplification plot; however, the amplification curve did not cross the ΔRn threshold line and the correct Cq value was not obtained with a threshold line=0.2. The other tests (PRSV-HN, CaM, and Chy with ABI7500 and QS12K, and all detection tests with LC480) showed no important differences in the LOD for each test using either DNA polymerase. Therefore, when performing PRSV-YK and PRSV-SC detection tests with the ABI7500 or QS12K, FastGene should be used to avoid false negatives for foods containing GM papaya lines PRSV-YK and PRSV-SC at low mixing levels.


Assuntos
Carica , DNA Polimerase Dirigida por DNA , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Carica/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Plantas Geneticamente Modificadas/genética , Alimentos Geneticamente Modificados , Caulimovirus/genética , Potyvirus/genética , Potyvirus/isolamento & purificação
16.
Infect Immun ; 91(7): e0051722, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37341599

RESUMO

Parasitic diseases are a major public health problem worldwide. Plant-derived products appear to be ideal candidates from a biotechnological perspective, being sustainable and environmentally friendly. The antiparasitic properties of Carica papaya have been attributed to some of its components, including papain and other compounds that are concentrated in the latex and seeds. This study demonstrated in vitro a high and insignificantly different cysticidal activity of soluble extract that was obtained after the disruption of nontransformed wild-type (WT) cells as well as transformed papaya calluses (PC-9, PC-12, and PC-23) and papaya cell suspensions (CS-9, CS-12, and CS-23). In vivo, cell suspensions of CS-WT and CS-23 that had been previously lyophilized were tested with respect to their cysticidal effects, compared with those of three commercial antiparasitic drugs. CS-WT and CS-23 together reduced the number of cysticerci, the number of buds, and the percentage of calcified cysticerci in a similar extent to albendazole and niclosamide, whereas ivermectin was less effective. Mice were then orally immunized with CS-23 that expressed the anti-cysticercal KETc7 antigen (10 µg/mouse), CS-WT (10 mg/mouse), or both together to evaluate their preventive properties. CS-23 and CS-WT significantly reduced the expected parasite and increased the percentage of calcified cysticerci as well as recovery, being more effective when employed together. The results reported in this study support the feasibility of the development of an anti-cysticercosis vaccine from cells of C. papaya in in vitro cultures, as they are a source of an anthelmintic, natural, and reproducible product.


Assuntos
Carica , Camundongos , Animais , Suspensões , Albendazol , Extratos Vegetais/farmacologia , Sementes
17.
Curr Issues Mol Biol ; 45(2): 852-884, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36826001

RESUMO

The prevalence of obesity in contemporary society has brought attention to how serious it is all around the world. Obesity, a proinflammatory condition defined by hypertrophied adipocytes and immune cells that reside in adipose tissue, is characterized by elevated circulating levels of proinflammatory cytokines. The pro-inflammatory mediators trigger a number of inflammatory pathways and affect the phosphorylation of a number of insulin-signaling pathways in peripheral tissues. In this work, we pointed the outcome of the leaves of Carica papaya (C. papaya) on the inflammatory molecules by in vivo and in silico analysis in order to prove its mechanisms of action. Adipocytokines, antioxidant enzymes, gene and protein expression of pro-inflammatory signaling molecules (mTOR, TNF-α, IL-1ß, IL-6 and IKKß) by q-RT-PCR and immunohistochemistry, as well as histopathological analysis, in adipose tissues were carried out. C. papaya reinstated the levels of adipocytokines, antioxidant enzymes and mRNA levels of mTOR, TNF-α, IL-1ß, IL-6 and IKKß in the adipose tissues of type 2 diabetic rats. Molecular docking and dynamics simulation studies revealed that caffeic acid, transferulic acid and quercetin had the top hit rates against IKKß, TNF-α, IL-6, IL-1ß, and mTOR. This study concludes that C. papaya put back the altered effects in fatty tissue of type 2 diabetic rats by restoring the adipocytokines and the gene expression.

18.
BMC Plant Biol ; 23(1): 35, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642722

RESUMO

Exogenous GAs have an indeterminate effect on root development. Our current study used female papaya to reveal how the roots and rhizosphere respond to the exogenous application of GA3 by investigating the transcriptome profile in roots, metabolic profile and microbial community in both roots and rhizosphere of GA3-treated and control female papaya. The results demonstrated that exogenous GA3 treatment enhanced female papaya lateral root development, which gave plants physical advantages of water and nutrient uptake. In addition, it was likely that GA3 spraying in papaya shoot apices increased the level of auxin, which was transported to roots by CpPIN1, where auxin upregulated CpLBD16 and repressed CpBP to promote the lateral root initiation and development. In papaya roots, corresponding transporters (CpTMT3, CpNRT1:2, CpPHT1;4, CpINT2, CpCOPT2, CpABCB11, CpNIP4;1) were upregulated and excretion transporters were downregulated such as CpNAXT1 for water and nutrients uptake with exogenous GA3 application. Moreover, in GA3-treated papaya roots, CpALS3 and CpMYB62 were downregulated, indicating a stronger abiotic resistance to aluminum toxic and phosphate starvation. On the other hand, BRs and JAs, which involve in defense responses, were enriched in the roots and rhizosphere of GA3-treated papayas. The upregulation of the two hormones might result in the reduction of pathogens in roots and rhizosphere such as Colletotrichum and Verticillium. GA3-treated female papaya increased the abundance of beneficial bacteria species including Mycobacterium, Mitsuaria, and Actinophytocola, but decreased that of the genera Candidatus and Bryobacter for that it required less nitrate. Overall, the roots and rhizosphere of female papaya positively respond to exogenous application of GA3 to promote development and stress tolerance. Treatment of female papaya with GA3 might result in the promotion of lateral root formation and development by upregulating CpLBD16 and downregulating CpBP. GA3-treated papaya roots exhibited feedback control of brassinolide and jasmonate signaling in root development and defense. These findings revealed complex response to a growth hormone treatment in papaya roots and rhizosphere and will lead to investigations on the impact of other plant hormones on belowground development in papaya.


Assuntos
Carica , Microbiota , Rizosfera , Verduras , Ácidos Indolacéticos/metabolismo , Água/metabolismo , Raízes de Plantas/metabolismo , Microbiologia do Solo
19.
J Exp Bot ; 74(15): 4579-4596, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37137337

RESUMO

The majority of plant disease resistance (R) genes encode nucleotide binding-leucine-rich repeat (NLR) proteins. In melon, two closely linked NLR genes, Fom-1 and Prv, were mapped and identified as candidate genes that control resistance to Fusarium oxysporum f.sp. melonis races 0 and 2, and to papaya ringspot virus (PRSV), respectively. In this study, we validated the function of Prv and showed that it is essential for providing resistance against PRSV infection. We generated CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] mutants using Agrobacterium-mediated transformation of a PRSV-resistant melon genotype, and the T1 progeny proved susceptible to PRSV, showing strong disease symptoms and viral spread upon infection. Three alleles having 144, 154, and ~3 kb deletions, respectively, were obtained, all of which caused loss of resistance. Interestingly, one of the Prv mutant alleles, prvΔ154, encoding a truncated product, caused an extreme dwarf phenotype, accompanied by leaf lesions, high salicylic acid levels, and defense gene expression. The autoimmune phenotype observed at 25 °C proved to be temperature dependent, being suppressed at 32 °C. This is a first report on the successful application of CRISPR/Cas9 to confirm R gene function in melon. Such validation opens up new opportunities for molecular breeding of disease resistance in this important vegetable crop.


Assuntos
Cucurbitaceae , Resistência à Doença , Resistência à Doença/genética , Alelos , Cucurbitaceae/genética , Sistemas CRISPR-Cas , Mutagênese , Doenças das Plantas/genética
20.
Crit Rev Food Sci Nutr ; 63(30): 10499-10519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35638309

RESUMO

Cancer is a leading cause of morbidity and mortality across the globe. Emerging evidence suggests that consumption of a well-balanced diet containing a wide variety of vegetables, fruits, and whole grains can prevent the development of, halt, or reverse cancer progression. Carica papaya L. (papaya) has a wide distribution throughout many countries. Although the fruits of C. papaya are primarily consumed as food, various parts of this tree, including the bark, fruits, latex, seeds, and roots, have been used in traditional medicine for health promotion and disease mitigation. While numerous individual studies have investigated anticancer efficacies of various products and constituents of C. papaya, an up-to-date, comprehensive, and critical evaluation of available research data covering its role in the prevention and intervention of various human malignancies has not been conducted according to our knowledge. The purpose of this review is to present a systematic, comprehensive, and critical analysis of the cancer-preventive potential of C. papaya extracts, fractions, and isolated phytochemicals with a special emphasis on the cellular and molecular mechanisms of action. Moreover, the bioavailability, pharmacokinetics, and safety profiles of individual phytochemicals of C. papaya, as well as current limitations, challenges, and future directions of research, have also been discussed.


Assuntos
Carica , Neoplasias , Humanos , Carica/química , Extratos Vegetais/química , Verduras , Sementes/química , Neoplasias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA