Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.664
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 49(2): 235-246.e4, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076100

RESUMO

HIV-1 Envelope (Env) mediates viral-host membrane fusion after binding host-receptor CD4 and coreceptor. Soluble envelopes (SOSIPs), designed to mimic prefusion conformational states of virion-bound envelopes, are proposed immunogens for eliciting neutralizing antibodies, yet only static structures are available. To evaluate conformational landscapes of ligand-free, CD4-bound, inhibitor-bound, and antibody-bound SOSIPs, we measured inter-subunit distances throughout spin-labeled SOSIPs using double electron-electron resonance (DEER) spectroscopy and compared results to soluble and virion-bound Env structures, and single-molecule fluorescence resonance energy transfer (smFRET)-derived dynamics of virion-bound Envs. Unliganded SOSIP measurements were consistent with closed, neutralizing antibody-bound structures and shielding of non-neutralizing epitopes, demonstrating homogeneity at Env apex, increased flexibility near Env base, and no evidence for the intra-subunit flexibility near Env apex suggested by smFRET. CD4 binding increased inter-subunit distances and heterogeneity, consistent with rearrangements required for coreceptor binding. Results suggest similarities between SOSIPs and virion-bound Envs and demonstrate DEER's relevance for immunogen design.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação de Anticorpos/imunologia , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Epitopos/imunologia , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , Humanos
2.
Proc Natl Acad Sci U S A ; 121(11): e2319374121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437550

RESUMO

Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.

3.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38722808

RESUMO

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Assuntos
Cobre , Proteínas Intrinsicamente Desordenadas , SARS-CoV-2 , Proteínas não Estruturais Virais , Cobre/química , Cobre/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligação Proteica , Modelos Moleculares , COVID-19/virologia
4.
Proc Natl Acad Sci U S A ; 120(43): e2308741120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37862383

RESUMO

Macromolecules bearing open-shell entities offer unique transport properties for both electronic and spintronic devices. This work demonstrates that, unlike their conjugated polymer counterparts, the charge carriers in radical polymers (i.e., macromolecules with nonconjugated backbones and with stable open-shell sites present at their pendant groups) are singlet cations, which opens significant avenues for manipulating macromolecular design for advanced solid-state transport in these highly transparent conductors. Despite this key point, magnetoresistive effects are present in radical polymer thin films under applied magnetic fields due to the presence of impurity sites in low (i.e., <1%) concentrations. Additionally, thermal annealing of poly(4-glycidyloxy-2,2,6,6- tetramethylpiperidine-1-oxyl) (PTEO), a nonconjugated polymer with stable open-shell pendant groups, facilitated better electron exchange and pairwise spin interactions resulting in an unexpected magnetoresistance signal at relatively low field strengths (i.e., <2 T). The addition of 4-hydroxy-2,2,6,6-tetramethylpiperidin-N-oxy (TEMPO-OH), a paramagnetic species, increased the magnitude of the MR effect when the small molecule was added to the radical polymer matrix. These macroscopic experimental observables are explained using computational approaches that detail the fundamental molecular principles. This intrinsic localized charge transport behavior differs from the current state of the art regarding closed-shell conjugated macromolecules, and it opens an avenue towards next-generation transport in organic electronic materials.

5.
Proc Natl Acad Sci U S A ; 120(7): e2221036120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745787

RESUMO

G protein-coupled receptors (GPCR) activate numerous intracellular signaling pathways. The oligomerization properties of GPCRs, and hence their cellular functions, may be modulated by various components within the cell membrane (such as the presence of cholesterol). Modulation may occur directly via specific interaction with the GPCR or indirectly by affecting the physical properties of the membrane. Here, we use pulsed Q-band double electron-electron resonance (DEER) spectroscopy to probe distances between R1 nitroxide spin labels attached to Cys163 and Cys344 of the ß1-adrenergic receptor (ß1AR) in n-dodecyl-ß-D-maltoside micelles upon titration with two soluble cholesterol analogs, cholesteryl hemisuccinate (CHS) and sodium cholate. The former, like cholesterol, inserts itself into the lipid membrane, parallel to the phospholipid chains; the latter is aligned parallel to the surface of membranes. Global quantitative analysis of DEER echo curves upon titration of spin-labeled ß1AR with CHS and sodium cholate reveal the following: CHS binds specifically to the ß1AR monomer at a site close to the Cys163-R1 spin label with an equilibrium dissociation constant [Formula: see text] ~1.4 ± 0.4 mM. While no direct binding of sodium cholate to the ß1AR receptor was observed by DEER, sodium cholate induces specific ß1AR dimerization ([Formula: see text] ~35 ± 6 mM and a Hill coefficient n ~ 2.5 ± 0.4) with intersubunit contacts between transmembrane helices 1 and 2 and helix 8. Analysis of the DEER data obtained upon the addition of CHS to the ß1AR dimer in the presence of excess cholate results in dimer dissociation with species occupancies as predicted from the individual KD values.


Assuntos
Colato de Sódio , Esteróis , Espectroscopia de Ressonância de Spin Eletrônica , Receptores Acoplados a Proteínas G , Colesterol/química , Marcadores de Spin , Receptores Adrenérgicos
6.
Proc Natl Acad Sci U S A ; 120(15): e2201910120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37027427

RESUMO

α-synuclein (αS) is an intrinsically disordered protein whose functional ambivalence and protein structural plasticity are iconic. Coordinated protein recruitment ensures proper vesicle dynamics at the synaptic cleft, while deregulated oligomerization on cellular membranes contributes to cell damage and Parkinson's disease (PD). Despite the protein's pathophysiological relevance, structural knowledge is limited. Here, we employ NMR spectroscopy and chemical cross-link mass spectrometry on 14N/15N-labeled αS mixtures to provide for the first time high-resolution structural information of the membrane-bound oligomeric state of αS and demonstrate that in this state, αS samples a surprisingly small conformational space. Interestingly, the study locates familial Parkinson's disease mutants at the interface between individual αS monomers and reveals different oligomerization processes depending on whether oligomerization occurs on the same membrane surface (cis) or between αS initially attached to different membrane particles (trans). The explanatory power of the obtained high-resolution structural model is used to help determine the mode-of-actionof UCB0599. Here, it is shown that the ligand changes the ensemble of membrane-bound structures, which helps to explain the success this compound, currently being tested in Parkinson's disease patients in a phase 2 trial, has had in animal models of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Membranas/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética , Antiparkinsonianos/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(30): e2305706120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459516

RESUMO

Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.

8.
J Biol Chem ; : 107711, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39178945

RESUMO

The kinetics of iron trafficking in whole respiring S. cerevisiae cells was investigated using Mössbauer and EPR spectroscopies. The Mössbauer-active isotope 57Fe was added to cells growing under iron-limited conditions; cells were analysed at different times post iron addition. Spectroscopic changes suggested that the added 57Fe initially entered the labile iron pool, and then distributed to vacuoles and mitochondria. The first spectroscopic feature observed, ∼ 3 min after adding 57Fe plus a 5-15 min processing deadtime, was a quadrupole doublet typical of nonheme high-spin FeII. This feature likely arose from labile FeII pools in the cell. At later times (15-150 min), magnetic features due to S = 5/2 FeIII developed; these likely arose from FeIII in vacuoles. Corresponding EPR spectra were dominated by a g = 4.3 signal from the S = 5/2 FeIII ions that increased in intensity over time. Developing at a similar rate was a quadrupole doublet typical of S = 0 [Fe4S4]2+ clusters and low-spin FeII hemes; such centers are mainly in mitochondria, cytosol, and nuclei. Development of these features was simulated using a published mathematical model, and simulations compared qualitatively well with observations. In the five sets of experiments presented, all spectroscopic features developed within the doubling time of the cells, implying that the detected iron trafficking species are physiologically relevant. These spectroscopy-based experiments allow the endogenous labile iron pool within growing cells to be detected without damaging or altering the pool as definitely occurs using chelator-probe detection and possibly occurs using chromatographic separations.

9.
J Biol Chem ; 300(9): 107660, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39128727

RESUMO

Protein aggregation is a common feature of many neurodegenerative diseases. In Huntington's disease, mutant huntingtin is the primary aggregating protein, but the aggregation of other proteins, such as TDP43, is likely to further contribute to toxicity. Moreover, mutant huntingtin is also a risk factor for TDP pathology in ALS. Despite this co-pathology of huntingtin and TDP43, it remains unknown whether these amyloidogenic proteins directly interact with each other. Using a combination of biophysical methods, we show that the aggregation-prone regions of both proteins, huntingtin exon-1 (Httex1) and the TDP43 low complexity domain (TDP43-LCD), interact in a conformationally specific manner. This interaction significantly slows Httex1 aggregation, while it accelerates TDP43-LCD aggregation. A key intermediate responsible for both effects is a complex formed by liquid TDP43-LCD condensates and Httex1 fibrils. This complex shields seeding competent surfaces of Httex1 fibrils from Httex1 monomers, which are excluded from the condensates. In contrast, TDP43-LCD condensates undergo an accelerated liquid-to-solid transition upon exposure to Httex1 fibrils. Cellular studies show co-aggregation of untagged Httex1 with TDP43. This interaction causes mislocalization of TDP43, which has been linked to TDP43 toxicity. The protection from Httex1 aggregation in lieu of TDP43-LCD aggregation is interesting, as it mirrors what has been found in disease models, namely that TDP43 can protect from huntingtin toxicity, while mutant huntingtin can promote TDP43 pathology. These results suggest that direct protein interaction could, at least in part, be responsible for the linked pathologies of both proteins.

10.
J Biol Chem ; 300(6): 107292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636659

RESUMO

[FeFe]-hydrogenases catalyze the reversible oxidation of H2 from electrons and protons at an organometallic active site cofactor named the H-cluster. In addition to the H-cluster, most [FeFe]-hydrogenases possess accessory FeS cluster (F-cluster) relays that function in mediating electron transfer with catalysis. There is significant variation in the structural properties of F-cluster relays among the [FeFe]-hydrogenases; however, it is unknown how this variation relates to the electronic and thermodynamic properties, and thus the electron transfer properties, of enzymes. Clostridium pasteurianum [FeFe]-hydrogenase II (CpII) exhibits a large catalytic bias for H2 oxidation (compared to H2 production), making it a notable system for examining if F-cluster properties contribute to the overall function and efficiency of the enzyme. By applying a combination of multifrequency and potentiometric electron paramagnetic resonance, we resolved two electron paramagnetic resonance signals with distinct power- and temperature-dependent properties at g = 2.058 1.931 1.891 (F2.058) and g = 2.061 1.920 1.887 (F2.061), with assigned midpoint potentials of -140 ± 18 mV and -406 ± 12 mV versus normal hydrogen electrode, respectively. Spectral analysis revealed features consistent with spin-spin coupling between the two [4Fe-4S] F-clusters, and possible functional models are discussed that account for the contribution of coupling to the electron transfer landscape. The results signify the interplay of electronic coupling and free energy properties and parameters of the FeS clusters to the electron transfer mechanism through the relay and provide new insight as to how relays functionally complement the catalytic directionality of active sites to achieve highly efficient catalysis.


Assuntos
Clostridium , Hidrogênio , Hidrogenase , Proteínas Ferro-Enxofre , Oxirredução , Hidrogenase/metabolismo , Hidrogenase/química , Clostridium/enzimologia , Hidrogênio/metabolismo , Hidrogênio/química , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
11.
J Biol Chem ; 300(6): 107396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777142

RESUMO

Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.


Assuntos
Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo , Ligação Proteica , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Humanos , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteína 3 Ligante de Ácido Graxo/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Termodinâmica , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Sítios de Ligação
12.
J Biol Chem ; 300(8): 107591, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032647

RESUMO

Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature-dependent with a reduced concentration at 37 °C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25 and that the SN2 segment of SNAP25 is the last to enter the SNARE complex.


Assuntos
Neurônios , Proteínas Qa-SNARE , Proteína 25 Associada a Sinaptossoma , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/química , Neurônios/metabolismo , Animais , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/química , Cinética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Ratos , Multimerização Proteica
13.
Annu Rev Phys Chem ; 75(1): 437-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941526

RESUMO

Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.

14.
Brain ; 147(9): 2913-2933, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38226694

RESUMO

Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.


Assuntos
Consenso , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Neuroimagem/normas , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/normas , Tomografia por Emissão de Pósitrons/métodos
15.
Proc Natl Acad Sci U S A ; 119(36): e2210492119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36040869

RESUMO

Electrostatic interactions and charge balance are important for the formation of biomolecular condensates involving proteins and nucleic acids. However, a detailed, atomistic picture of the charge distribution around proteins during the phase-separation process is lacking. Here, we use solution NMR spectroscopy to measure residue-specific near-surface electrostatic potentials (ϕENS) of the positively charged carboxyl-terminal intrinsically disordered 103 residues of CAPRIN1, an RNA-binding protein localized to membraneless organelles playing an important role in messenger RNA (mRNA) storage and translation. Measured ϕENS values have been mapped along the adenosine triphosphate (ATP)-induced phase-separation trajectory. In the absence of ATP, ϕENS values for the mixed state of CAPRIN1 are positive and large and progressively decrease as ATP is added. This is coupled to increasing interchain interactions, particularly between aromatic-rich and arginine-rich regions of the protein. Upon phase separation, CAPRIN1 molecules in the condensed phase are neutral (ϕENS [Formula: see text] 0 mV), with ∼five molecules of ATP associated with each CAPRIN1 chain. Increasing the ATP concentration further inverts the CAPRIN1 electrostatic potential, so that molecules become negatively charged, especially in aromatic-rich regions, leading to re-entrance into a mixed phase. Our results collectively show that a subtle balance between electrostatic repulsion and interchain attractive interactions regulates CAPRIN1 phase separation and provides insight into how nucleotides, such as ATP, can induce formation of and subsequently dissolve protein condensates.


Assuntos
Fenômenos Bioquímicos , Proteínas Intrinsicamente Desordenadas , Transição de Fase , Proteínas de Ligação a RNA , Eletricidade Estática , Trifosfato de Adenosina/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Propriedades de Superfície
16.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737836

RESUMO

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Assuntos
Proteínas de Escherichia coli , Fosfoproteínas Fosfatases , Proteínas Tirosina Quinases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo
17.
Nano Lett ; 24(3): 873-880, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207217

RESUMO

Nitrogen-vacancy (NV) magnetometry offers an alternative tool to detect paramagnetic centers in cells with a favorable combination of magnetic sensitivity and spatial resolution. Here, we employ NV magnetic relaxometry to detect cytochrome C (Cyt-C) nanoclusters. Cyt-C is a water-soluble protein that plays a vital role in the electron transport chain of mitochondria. Under ambient conditions, the heme group in Cyt-C remains in the Fe3+ state, which is paramagnetic. We vary the concentration of Cyt-C from 6 to 54 µM and observe a reduction of the NV spin-lattice relaxation time (T1) from 1.2 ms to 150 µs, which is attributed to the spin noise originating from the Fe3+ spins. NV T1 imaging of Cyt-C drop-casted on a nanostructured diamond chip allows us to detect the relaxation rates from the adsorbed Fe3+ within Cyt-C.


Assuntos
Citocromos c , Nitrogênio , Magnetismo , Diamante , Fenômenos Magnéticos
18.
J Proteome Res ; 23(9): 3890-3903, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39115235

RESUMO

Archaeological textiles represent precious remains from ancient culture; this is because of the historical and cultural importance of the information that can be obtained by such relics. However, the extremely complicated state of preservation of these textiles, which can be charred, partially or totally mineralized, with heavy soil or biological contamination, requires highly specialized and sensitive analytical tools to perform a comprehensive study. Starting from these considerations, the paper presents a combined workflow that provides the extraction of dyes and keratins and keratin-associated proteins in a single step, minimizing sampling while maximizing the amount of information gained. In the first phase, different approaches were tested and two different protocols were found suitable for the purpose of the unique workflow for dyes/keratin-proteins: a slightly modified urea protocol and a recently proposed new TCEP/CAA procedure. In the second step, after the extraction, different methods of cleanup and workflow for proteins and dyes were investigated to develop protocols that did not result in a loss of aliquots of the analytes of interest and to maximize the recovery of both components from the extracting solution. These protocols investigated the application of two types of paramagnetic beads, unmodified and carboxylate-coated hydrophilic magnetic beads, and dialysis and stage-tip protocols. The newly designed protocols have been applied to cochineal, weld, orchil, kermes, and indigo keratin-based dyed samples to evaluate the effectiveness of the protocols on several dye sources. These protocols, based on a single extraction step, show the possibility of investigating dyes and keratins from a unique sample of 1 mg or lesser, with respect to the thresholds of sensitivity and accuracy required in the study of textile artifacts of historical and artistic values.


Assuntos
Corantes , Queratinas , Têxteis , Queratinas/química , Queratinas/isolamento & purificação , Têxteis/análise , Corantes/química , Corantes/análise , Ureia/química
19.
J Biol Chem ; 299(12): 105403, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229399

RESUMO

We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 µM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.


Assuntos
Proteínas Arqueais , Ferredoxinas , Oxirredutases , Pyrococcus furiosus , Ferredoxinas/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredução , Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/metabolismo
20.
J Biol Chem ; 299(7): 104897, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290533

RESUMO

Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid in a reaction catalyzed by a diiron center. The diiron center is well-coordinated by conserved histidine residues and is thought to remain with the enzyme. However, we find here that SCD1 progressively loses its activity during catalysis and becomes fully inactive after about nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center and that the addition of free ferrous ions (Fe2+) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe2+ in cells could regulate SCD1 activity and hence lipid metabolism.


Assuntos
Biocatálise , Cátions Bivalentes , Ferro , Estearoil-CoA Dessaturase , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ferro/química , Ferro/metabolismo , Mamíferos , Estearoil-CoA Dessaturase/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA