Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420569

RESUMO

In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS.


Assuntos
Fertilização , Frequência Cardíaca , Funções Verossimilhança
2.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746356

RESUMO

This paper aims to evaluate detection algorithms for perimeter security systems based on phase-sensitive optical time-domain reflectometry (Φ-OTDR). Our own designed and developed sensor system was used for the measurement. The main application of the system is in the area the perimeter fencing intrusion detection. The system is unique thanks to the developed motherboard, which contains a field-programmable gate array (FPGA) that takes care of signal processing. This allows the entire system to be integrated into a 1U rack chassis. A polygon containing two different fence types and also cable laid underground in a plastic tube was used for testing. Edge detection algorithms using the Sobel and Prewitt operators are considered for post-processing. The comparison is made based on the signal-to-noise ratio (SNR) values calculated for each event. Results of algorithms based on edge detection methods are compared with the conventional differential method commonly used in Φ-OTDR systems.

3.
Sensors (Basel) ; 22(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271194

RESUMO

A Brillouin distributed acoustic sensor (DAS) based on optical time-domain refractometry exhibiting a maximum detectible strain of 8.7 mε and a low signal fading is developed. Strain waves with frequencies of up to 120 Hz are measured with an accuracy of 12 µÎµ at a sampling rate of 1.2 kHz and a spatial resolution of 4 m over a sensing range of 8.5 km. The sensing range is further extended by using a modified inline Raman amplifier configuration. Using 80 ns Raman pump pulses, the signal-to-noise ratio is improved by 3.5 dB, while the accuracy of the measurement is enhanced by a factor of 2.5 to 62 µÎµ at the far-end of a 20 km fiber.

4.
Sensors (Basel) ; 21(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696082

RESUMO

In this study, a distributed acoustic sensor (DAS) was numerically modeled based on the non-ideal optical components with their noises and imperfections. This model is used to compare the response of DAS systems to standard single-mode fibers and ultra-low loss-enhanced backscattering (ULEB) fibers, a fiber with an array of high reflective points equally spaced along its length. It is shown that using ULEB fibers with highly reflective points improves the signal-to-noise ratio and linearity of the measurement, compared with the measurement based on standard single-mode fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA